

AMENDMENT 01

Project Name:

**Brookhurst Place Phase II
PROJECT No: 22-2729**

TRACT: 11702

Prepared for:

**Kam Sang Company, Inc.
411 E. Huntington Drive #305
Arcadis, Ca 91006
626-446-2988**

Prepared by:

**David Evans and Associates, Inc
17542 17th Street, Suite 150
Tustin, CA 92780**

**Phone: 714-336-6495, Email: moskorus@deainc.com
Project Manager: Mark S. Oskorus, PE, QSP
07/20/2023**

Section I

Preparer (Engineer):			
Title	Mark S. Oskorus	PE Registration #	C-62159
Company	David Evans and Associates, Inc		
Address	17542 17th Street, Suite 150 , Tustin, CA 92780		
Email	moskorus@deainc.com		
Telephone #	714-336-6495		
I hereby certify that this Water Quality Management Plan is in compliance with, and meets the requirements set forth in, Order No. R8-2009-0030/NPDES No. CAS618030, of the Garden Grove Regional Water Quality Control Board.			
Preparer Signature		Date	
Place Stamp Here			

Contents

	Page No.
Section II	Project Description.....AD1-1
Section III	Site DescriptionAD1-5
Section IV	Best Management Practices (BMPs).....AD1-6
Section V	Inspection/Maintenance Responsibility for BMPs.....AD1-12

Attachments

Attachment A .	Vicinity Map, WQMP site plan, and Calculations
Attachment B .	Construction Materials
Attachment C .	BMP Maintenance Supplement O&M
Attachment E .	BMPs Devices Details
Attachment F .	Geotechnical Study

Section II Project Description

II.1 Project Description

Provide a detailed project description including:

- Project areas;
- Land uses;
- Land cover;
- Design elements;
- A general description not broken down by drainage management areas (DMAs).

Include attributes relevant to determining applicable source controls. *Refer to Section 2.2 in the Technical Guidance Document (TGD) for information that must be included in the project description.*

Description of Proposed Project		
Development Category (From Model WQMP, Table 7.11-2; or -3):		Based upon City of Garden Grove Water Quality Management Plan checklist, Table 7.11-2, the following categories are applied:
	Category No. 1: New development project that create 10,000 SF or more of impervious surface. This category includes commercial, industrial, residential housing subdivisions, mixed-use and public projects on private or public property that falls under the planning and building authority or the permittees.	Category No. 6 Parking lots 5,000 square feet or more including associated drive aisle, and potentially exposed to urban stormwater runoff. A parking lot is defined as a land area or facility for the temporary parking or storage of motor vehicles used personally, for business, or for commerce.
	Category No. 7 Streets, roads, highways, and freeways. This category includes any paved surface that is 5,000 square feet or greater used for the transportation of automobiles, trucks, motorcycles, and other vehicles.	
Project Area (ft ²): <u>37,462</u>	Number of Dwelling Units: <u>112</u>	SIC Code: <u>N/A</u>
Project Area	Pervious	Impervious

Water Quality Management Plan (WQMP)

INSERT Project Name

	Area (acres or sq ft)	Percentage	Area (acres or sq ft)	Percentage
Pre-Project Conditions	1.293 acres	100%	0 acres	0%
Post-Project Conditions	0.127 acres	9.4%	1.223 acres	90.7%
<p>The study sites are characterized by flat sloping topography from the middle of the site flows east (to Brookhurst Street), west (to Brookhurst Way) and south (on-site) directions. Site elevations range from approximately 80 feet above sea level to approximately 73 feet above sea level as shown on the hydrology map – existing site condition.</p> <p>Under the development condition, underground piping system intercepts all roof drain storm runoff and discharges into the proposed storm drain system. It includes grate inlets, pipes, Contech biofiltration modular wetland, Contech underground storage devices, catch basin and outlet storm drain RCP pipe to the existing storm drain main within Brookhurst Street.</p>				
Drainage Patterns/Connections	<p>The storm drains line flows south in Brookhurst Street, east in Garden Grove Boulevard and then south in Flower Street. Surface runoff along the Brookhurst Way, along the westerly tract boundary flows southerly direction to Garden Grove Boulevard, then west along the Garden Grove Boulevard until intercepts by an existing catch basin, which is located at the northeast corner of Garden Grove Boulevard and Galway Street. Underground storm drain system carries the storm runoff westerly direction within the Garden Grove Boulevard and then turns south to Gilbert Street.</p> <p>Both systems connect with the Westminster channel and continue flows to the Bolsa Chica Channel and through Huntington Harbor and Anaheim Bay, finally discharges into the Pacific Ocean.</p>			

Water Quality Management Plan (WQMP)

INSERT Project Name

Narrative Project Description:

(Use as much space as necessary.)

The is a redevelopment project that will remove the existing open space and construct a residential apartment building. Brookhurst Triangle Phase II is located on the middle west portion of the Brookhurst Triangle site and has a total of 1.35 acres. A total of 112 residential units within new building No. 2. Which will be constructed within the tract 17702, Lot 1 boundary. Parking stalls, asphalt pavement, concrete curbs, concrete curb & gutter, drainage gutters, concrete sidewalk, underground utilities, and landscape will be installed on the site.

Brookhurst Triangle site is located by Brookhurst Street on the east, Garden Grove Boulevard on the south, Brookhurst Way on the west and existing office site on the north. The Brookhurst Triangle contains an approximately of 13.944 acres as shown on exhibit A-Vicinity map

The project proposes to install one underground detention basin and one biofiltration system on the south side of the project underneath a paved roadway and landscape area to address water quality needs of the project due to the expected increase in pollutant loads from redevelopment. Referring to the WQMP Exhibit, the projects drainage management areas P1 and P2 that combined into a 90.7% impervious composed of the sidewalks and the large apartment complex.

II.4 Post Development Drainage Characteristics

Describe post development drainage characteristics. *Refer to Section 2.2.4 in the Technical Guidance Document (TGD).*

The project proposes to install one underground detention basin and one biofiltration modular wetland system on the south side of the project underneath a paved roadway to address water quality needs of the project due to the expected increase in pollutant loads from redevelopment. Referring to the WQMP Exhibit, the projects drainage management areas P1 and P2 that combined into a 90.7% impervious composed of the sidewalks and the large apartment complex.

Under the post development condition, new storm drainpipes, grated inlets and catch basins will be installed within the project site to carry the 100-year on-site storm runoff generates from the project site.

Underground detention / infiltration Contech system will be installed within the project site. The purposes of the Contech system are:

- Service as an underground retention basin to maintain the existing 100-year storm runoff from the site, under the post-development condition, which will be either equal or less than the pre-development condition.
- Service as structural infiltration Best Management Practices (BMP) per Water Quality Management Plan (WQMP).

All on-site storm runoff will drain into the on-site underground Contech system. An overflow pipe, also known as regular release storm drainpipe for 100-year storm event, will be installed in between the Contech device and the outlet storm drainpipe. Another pipe coordinated with the plumbing engineer shall be used for groundwater release and will bypass the Contech system.

All storm drain generates from the project site flows to the underground storm drain system along the south easternly street that then shall be released into the existing storm drain system along Brookhurst street. It continues flows to the Bolsa Chica Channel and through Huntington Harbor and Anaheim Bay, finally discharges into the Pacific Ocean.

Section III Site Description

III.1 Physical Setting

Fill out table with relevant information. *Refer to Section 2.3.1 in the Technical Guidance Document (TGD).*

Planning Area/ Community Name	Tentative Tract Map 17702; Zoning: Planned Unit Development No. PUD-123-09 (Mixed Use)
Location/ Address	Brookhurst Triangle Phase II
	APN: TBD
Land Use	Planned Unit Development No. PUD-123-09 (Mixed Use)
Zoning	Planned Unit Development No. PUD-123-09 (Mixed Use)
Acreage	1.353 total acres - 1.293 Acres (56,323 SF) – Lot 1 and .06 acres (2,625 SF) lot C of Tract Map 17702
Predominant Soil Type	“B”

III.2 Site Characteristics

Fill out table with relevant information and include information regarding BMP sizing, suitability, and feasibility, as applicable. *Refer to Section 2.3.2 in the Technical Guidance Document (TGD).*

Site Characteristics	
Precipitation Zone	Approximately 0.77 inches at 24-hours-85 th percentile rainfall per Technical Guidance Document Figure XVI-1.
Topography	The study sites are characterized by flat sloping topography from the middle of the site flows east (to Brookhurst Street) and west (to Brookhurst Way) directions. Site elevations range from approximately 80 feet above sea level to approximately 73 feet above sea level as shown on the hydrology map – existing site condition.

Section IV Best Management Practices (BMPs)

IV. 1 Project Performance Criteria

Describe project performance criteria. Several steps must be followed in order to determine what performance criteria will apply to a project. These steps include:

- If the project has an approved WIHMP or equivalent, then any watershed specific criteria must be used and the project can evaluate participation in the approved regional or sub-regional opportunities. (Please ask your assigned planner or plan checker regarding whether your project is part of an approved WIHMP or equivalent.)
- Determine applicable hydromodification control performance criteria. *Refer to Section 7.II-2.4.2 of the Model WQMP.*
- Determine applicable LID performance criteria. *Refer to Section 7.II-2.4.3 of the Model WQMP.*
- Determine applicable treatment control BMP performance criteria. *Refer to Section 7.II-3.2.2 of the Model WQMP.*
- Calculate the LID design storm capture volume for the project. *Refer to Section 7.II-2.4.3 of the Model WQMP.*

(NOC Permit Area only) Is there an approved WIHMP or equivalent for the project area that includes more stringent LID feasibility criteria or if there are opportunities identified for implementing LID on regional or sub-regional basis?	YES <input type="checkbox"/>	NO <input checked="" type="checkbox"/>
If yes, describe WIHMP feasibility criteria or regional/sub-regional LID opportunities.	N/A	

Project Performance Criteria	
If HCOC exists, list applicable hydromodification control performance criteria (Section 7.II-2.4.2.2 in MWQMP)	N/A
List applicable LID performance criteria (Section 7.II-2.4.3 from MWQMP)	<p>Per 7.II-2.4.3 of the Model WQMP, the available LID Treatment BMPs to be utilized in reducing the post-development impacts include shallow infiltration, harvest and use, evapotranspiration, or biotreat/biofilter, of the 85th percentile of a 24-hour storm event.</p> <p>The project will implement Modular Wetland BMPs due to infiltration infeasibility from a high ground water table.</p>
List applicable treatment control BMP performance criteria (Section 7.II-3.2.2 from MWQMP)	<p>Per 7.II-3.2.2 of the Model WQMP, if the LID performance criteria is not feasibly met by retention and/or biotreatment, then sizing of onsite treatment control BMPs are required. Sizing of these treatment control BMPs will include, if applicable, any Water Quality credits as calculated per the Technical Guidance Document. If the additional required volume can be met, and has a medium to high effectiveness for reducing the primary POCs, the project is considered to be in compliance; a waiver application and participation in an alternative program is not required.</p> <p>If the cost of providing treatment control BMPs greatly outweighs the pollution control benefits, a waiver of treatment control and LID requirements can be requested</p>
Calculate LID design storm capture volume for Project.	Refer to Appendix A.

IV.2. Site Design and Drainage

Describe site design and drainage including

- A narrative of site design practices utilized or rationale for not using practices;
- A narrative of how site is designed to allow BMPs to be incorporated to the MEP
- A table of DMA characteristics and list of LID BMPs proposed in each DMA.
- Reference to the WQMP "BMP Exhibit."
- Calculation of Design Capture Volume (DCV) for each drainage area.
- A listing of GIS coordinates for LID and Treatment Control BMPs.

Refer to Section 2.4.2 in the Technical Guidance Document (TGD).

The first step in the LID BMP selection process is to consider HSCs. There are no significant HSCs proposed for this project.

The next step is to consider infiltration BMPs or harvest and use BMPs. Area P1 and P2 uses proprietary Modular Wetlands System Biofiltration BMP, no other LID BMPs were used in the calculations. The Modular Wetlands System was designed using volume-based bmp design. Project has proposed one underground storm drain storage basins are for the HCOC requirements.

The attached map in Section VI (WQMP Drainage/Site Plan) describes the stormwater drainage management area (DMA) and proposed BMPs. The BMP Sizing Table 1.1 in Section VI includes the Design Capture Volume (DCV) calculations.

GIS coordinate for the BMP is as follows:

Modular Wetlands System (Subarea P1 and P2): 33°46'32.2"N 117°57'27.8"W

IV.3.2 Infiltration BMPs

Identify infiltration BMPs to be used in project. If design volume cannot be met, state why.

(No infiltration BMPs used)

Name	Included?
Bioretention without underdrains	<input checked="" type="checkbox"/>
Rain gardens	<input type="checkbox"/>
Porous landscaping	<input type="checkbox"/>
Infiltration planters	<input checked="" type="checkbox"/>
Retention swales	<input type="checkbox"/>
Infiltration trenches	<input type="checkbox"/>
Infiltration basins	<input type="checkbox"/>
Drywells	<input type="checkbox"/>
Subsurface infiltration galleries	<input type="checkbox"/>
French drains	<input type="checkbox"/>
Permeable asphalt	<input type="checkbox"/>
Permeable concrete	<input type="checkbox"/>
Permeable concrete pavers	<input type="checkbox"/>
Other:	<input type="checkbox"/>
Other:	<input type="checkbox"/>

Show calculations below to demonstrate if the LID Design Strom Capture Volume can be met with infiltration BMPs. If not, document how much can be met with infiltration and document why it is not feasible to meet the full volume with infiltration BMPs.

IV.3.4 Biotreatment BMPs

If the full Design Storm Capture Volume cannot be met with infiltration BMPs, and/or evapotranspiration and rainwater harvesting BMPs, describe biotreatment BMPs included. Include sections for selection, suitability, sizing, and infeasibility, as applicable.

Name	Included?
Bioretention with underdrains	<input type="checkbox"/>
Stormwater planter boxes with underdrains	<input type="checkbox"/>
Rain gardens with underdrains	<input type="checkbox"/>
Constructed wetlands	<input type="checkbox"/>
Vegetated swales	<input type="checkbox"/>
Vegetated filter strips	<input type="checkbox"/>
Proprietary vegetated biotreatment systems	<input checked="" type="checkbox"/>
Wet extended detention basin	<input type="checkbox"/>
Dry extended detention basins	<input type="checkbox"/>
Other:	<input type="checkbox"/>
Other:	<input type="checkbox"/>

Show calculations below to demonstrate if the LID Design Storm Capture Volume can be met with infiltration, evapotranspiration, rainwater harvesting and/or biotreatment BMPs. If not, document how much can be met with either infiltration BMPs, evapotranspiration, rainwater harvesting BMPs, or a combination, and document why it is not feasible to meet the full volume with these BMP categories.

The project site (P1 and P2) uses proprietary Modular Wetlands System Biofiltration BMP. The Modular Wetland System was designed using volume-based bmp design. Project has proposed one underground storm drain storage basins are for the HCOC requirements.

(A) Required:

Design Capture Volume (DCV) = 3405 CF (Per calculation sheet)

Design flow rate =0.325 cfs (per calculation sheet)

(B) Provide:

Capture Volume:

Approximately 3,500 CF capture volume will be provided by the on-site underground detention basin for the Brookhurst Phase II – Building No. 2 development which is greater than the Design Capture Volume (3,405 CF). Therefore, it is OK.

IV.3.5 Hydromodification Control BMPs

Describe hydromodification control BMPs. See Section 5 of the Technical Guidance Document (TGD). Include sections for selection, suitability, sizing, and infeasibility, as applicable. Detail compliance with Prior Conditions of Approval (if applicable).

IV.3.6 Regional/Sub-Regional LID BMPs

Describe regional/sub-regional LID BMPs in which the project will participate. *Refer to Section 7.II-2.4.3.2 of the Model WQMP.*

Regional/Sub-Regional LID BMPs

Section V Inspection/Maintenance Responsibility for BMPs

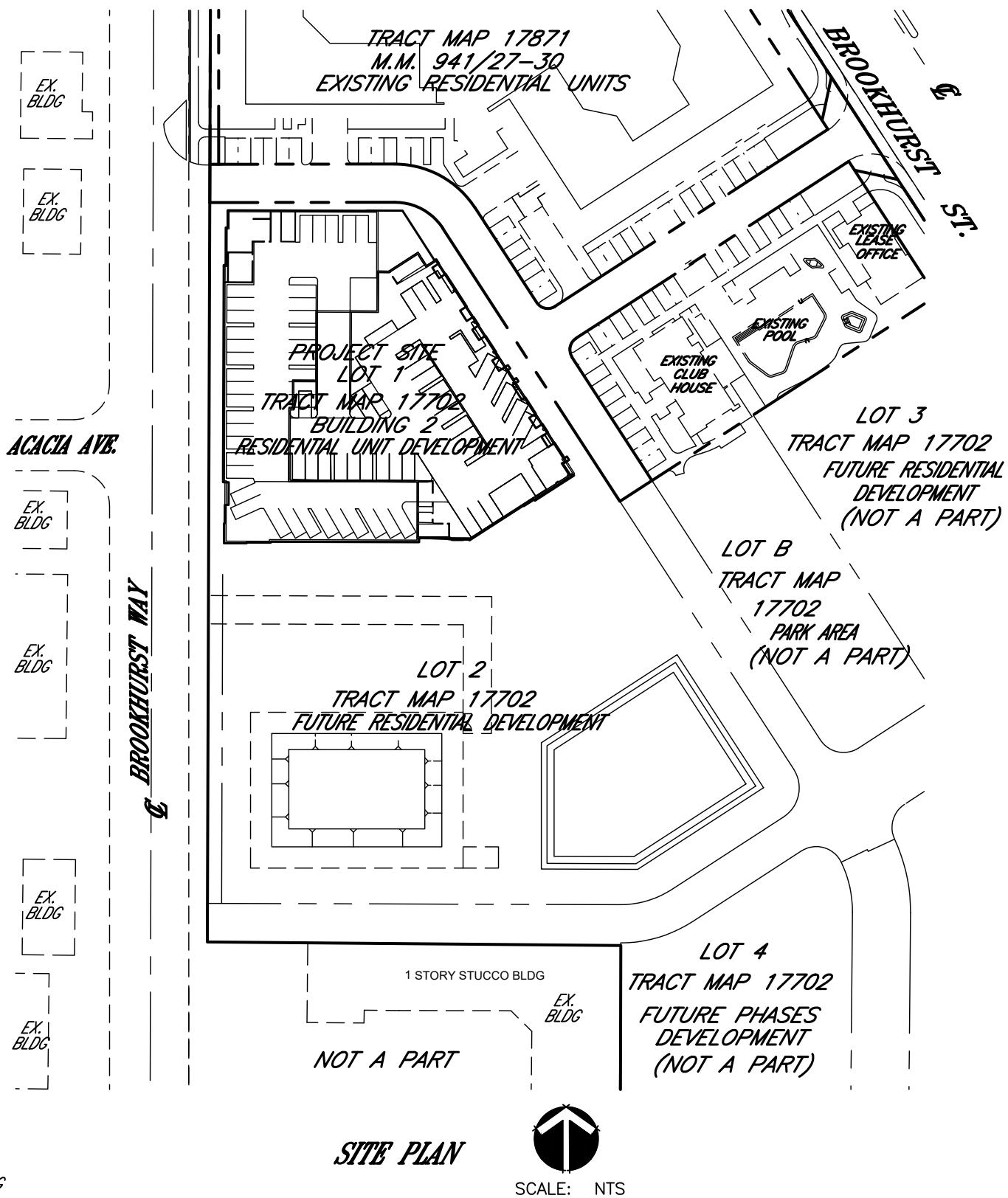
Fill out information in table below. Prepare and attach an Operation and Maintenance Plan. Identify the funding mechanism through which BMPs will be maintained. Inspection and maintenance records must be kept for a minimum of five years for inspection by the regulatory agencies. *Refer to Section 7.II 4.0 in the Model WQMP.*

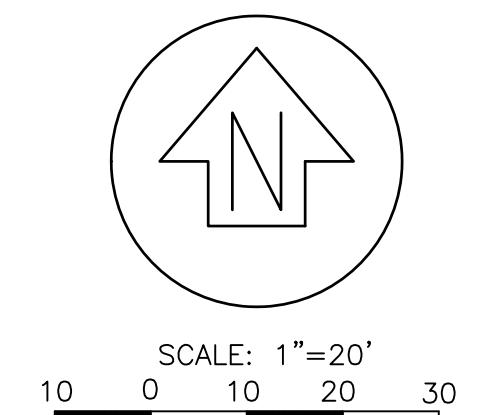
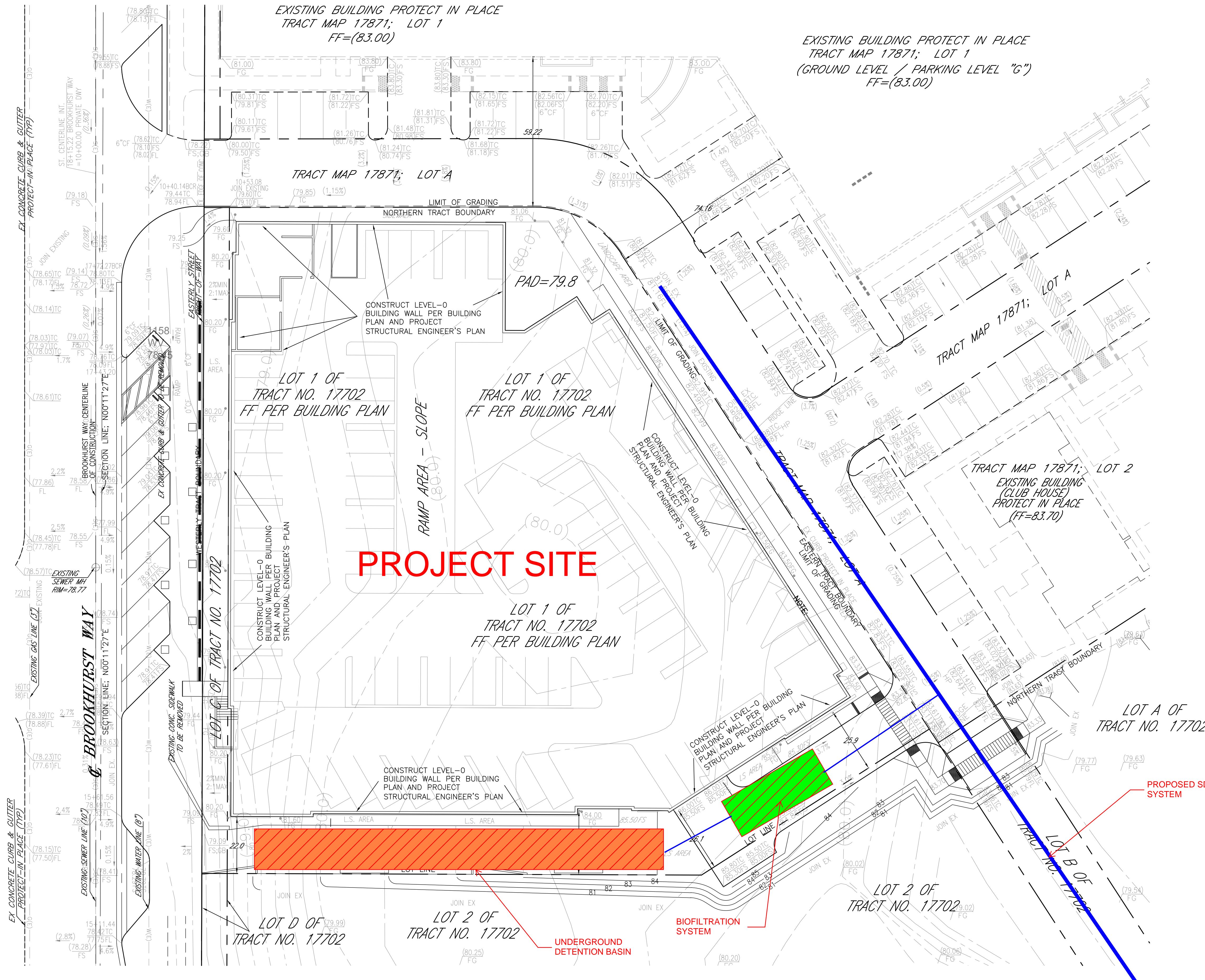
BMP Inspection/Maintenance			
BMP	Responsible Party(s)	Inspection/ Maintenance Activities Required	Minimum Frequency of Activities
BIO-7 Proprietary Biotreatment: Modular Wetland Systems (MWS)	HOA and Property Management Associates	The Modular Wetland units shall be maintained in accordance with manufacturer's specifications. The system shall be inspected at a minimum of once every six months, prior to the start of the rainy season (October 1) each year, and after major storm events. Typical maintenance includes removing trash & debris from the catch basin screening filter (by hand), removal of sediment and solids in the settlement chamber (vacuum truck), replacement of the BioMediaGREENTM filter cartridge, and replacement of the BioMediaGREENTM drain down filter (if equipped). In addition, plants within the wetland chamber will require trimming as needed in conjunction with routine landscape maintenance activities. No fertilizer shall be used in this chamber. Wetland chamber should be inspected during rain events to verify flow through the system. If little to no flow is observed from the lower valve or orifice plate, the wetland media may require replacement. If prior treatment stages are properly maintained, the life of the wetland media can be up to 20 years.	2x per year

Priority Project Water Quality Management Plan (WQMP)
Brookhurst Place Phase II

Underground storm drain storage basins (HCOC)	HOA and Property Management Associates	Maintenance of structural BMPs implemented at the project site shall be performed at the frequency prescribed in this WQMP. Inspection and reveal accumulated sediment, trash and prevent the clogging the discharge orifice. Ensure the underground pipe system used for storm water storage function.	Annually
Catch Basin & Insert Filter	HOA and Property Management Associates	Inspect catchment area for an excessive sediment, trash, and/or debris accumulation on surface. Inspect inlet for excessive sediment, trash, and/or debris accumulation. Litter leaves and debris should be removed from inlet to reduce risk of outlet clogging. Change the insert Filter as needed	Prior to wet season and as needed
Common Area Litter Control	HOA and Property Management Associates	Litter patrol, violations investigations, reporting and other litter control activities shall be performed on a weekly basis and in conjunction with routine maintenance activities.	Weekly
Employee Training	HOA and Property Management Associates	The Owner shall educate all new employees/ managers on storm water pollution prevention, particularly good housekeeping practices, prior to the start of the rainy season (October 1). Refresher courses shall be conducted on an as needed basis. Materials that may be utilized on BMP maintenance are included in Appendix D.	Annually
Street Sweeping Private Streets and Parking Lots	HOA and Property Management Associates	On-site parking lots and drive aisles will be swept on a monthly basis, at minimum.	Monthly
Provide storm drain system stenciling and signage	HOA and Property Management Associates	Storm drain stencils shall be inspected for legibility, at minimum, once prior to the storm season, no later than October 1 st each year. Those determined to be illegible will be re-stenciled as soon as possible, once every 5 years at minimum.	Annually
Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control	HOA and Property Management Associates	In conjunction with routine maintenance, verify that landscape design continues to function properly by adjusting systems to eliminate overspray to hardscape areas and to verify that irrigation timing and cycle lengths are adjusted in accordance to water demands, given the time of year, weather, and day or nighttime temperatures. System testing shall occur	2x per year

Priority Project Water Quality Management Plan (WQMP)
Brookhurst Place Phase II





		twice per year. Water from testing/flushing shall be collected and properly disposed to the sewer system and shall not discharge to the storm drain system.	
--	--	---	--

APPENDIX A -AMENDMENT 1

VICINITY MAP AND WQMP SITE PLAN & HYDROLOGY CALCULATIONS

SCALE: 1"=20'

LEGEND

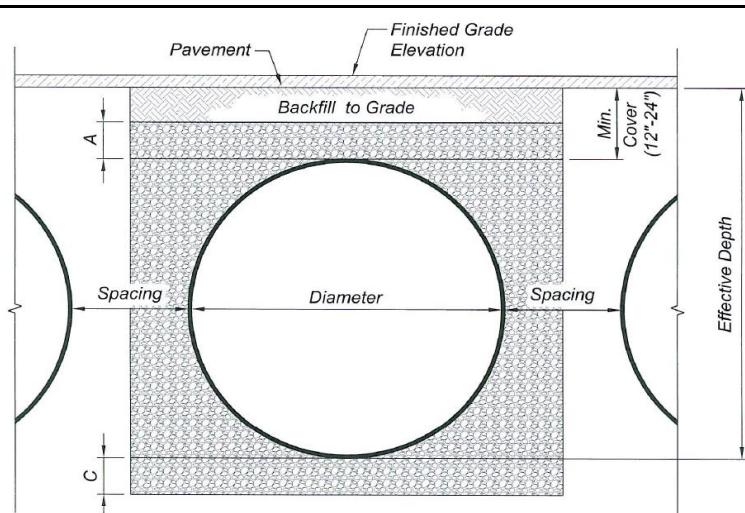
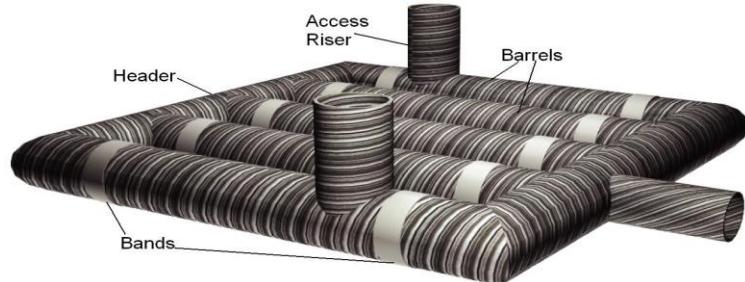
HP	HIGH POINT	(120)	EXISTING ELEVATION
TC	TOP OF CURB	120	PROPOSED ELEVATION
FL	FLOW LINE	TBM	TEMPORARY BENCH MARK
FS	FINISHED SURFACE	BM	BENCH MARK
FG	FINISHED GRADE	C	CUT
FF	FINISHED FLOOR	F	FILL
GF	GARAGE FLOOR	N	NATURAL
PAD	PAD	PP	POWER POLE
TW	TOP OF WALL	FH	FIR HYDRANT
TF	TOP OF FOOTING	BW	BACK OF WALK
H	HEIGHT		
L	LENGTH		
P	PROPERTY LINE		
R/W	RIGHT-OF-WAY		
— - - - -	SUBDRAIN PIPE	-----	PROPERTY LINE
-----	SUBDRAIN COLLECTION SYSTEM	-----	EXISTING CONTOURS
— - - - -	PROPOSE STORM DRAIN	-----	PROPOSED CONTOURS
— - - - -	PROPOSE SEWER LINE	— - - - -	CUT/FILL DAYLIGHT LINE
— - - - -	PROPOSE WATER LINE	— - - - -	CHAIN LINK FENCE
— - - - -		— - - - -	EX. CATV LINE
— - - - -		— - - - -	EX. GAS LINE
— - - - -		— - - - -	EX. STORM DRAIN LINE
— - - - -		— - - - -	EX. SEWER LINE

WDID #:

CITY OF GARDEN GROVE
PRECISE GRADING PLAN
TRACT NO. 17702, LOT 1
BROOKHURST TRIANGLE PHASE II
BUILDING #2 - L0 LEVEL

For design assistance, drawings,
and pricing send completed worksheet to:
dyods@contech-cpi.com

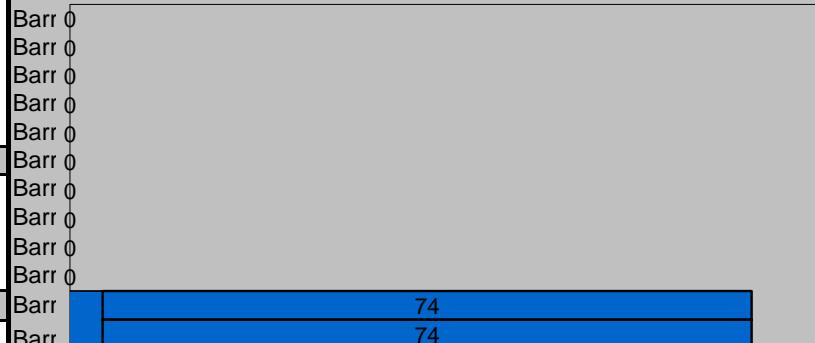
Project Summary



Date:	
Project Name:	
City / County:	
State:	
Designed By:	
Company:	
Telephone:	

Enter Information in
Blue Cells

Corrugated Metal Pipe Calculator

Storage Volume Required (cf):	3,140
Limiting Width (ft):	16.00
Invert Depth Below Asphalt (ft):	9.00
Solid or Perforated Pipe:	Solid
Shape Or Diameter (in):	60
Number Of Headers:	1
Spacing between Barrels (ft):	2.50
Stone Width Around Perimeter of System (ft):	
Depth A: Porous Stone Above Pipe (in):	
Depth C: Porous Stone Below Pipe (in):	
Stone Porosity (0 to 40%):	

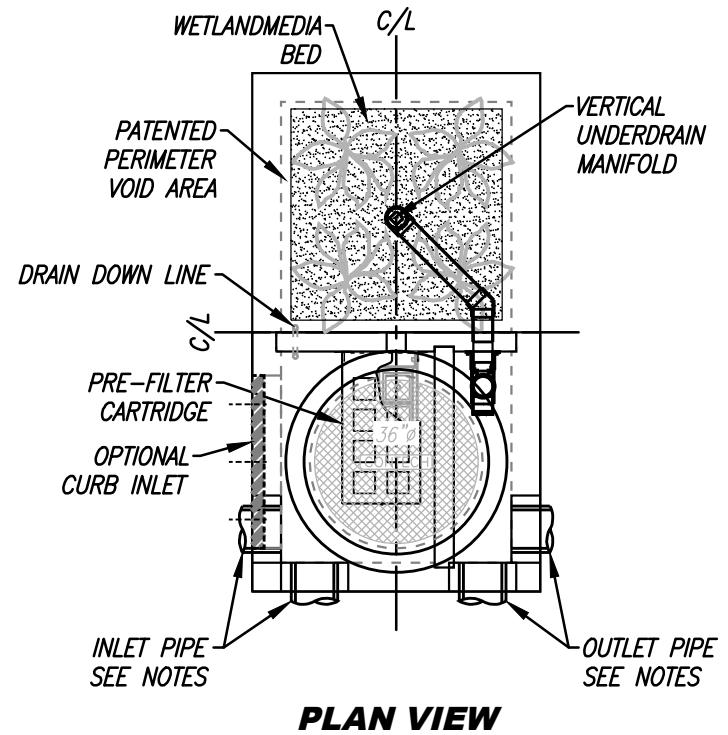

19.63 ft² Pipe Area

System Sizing

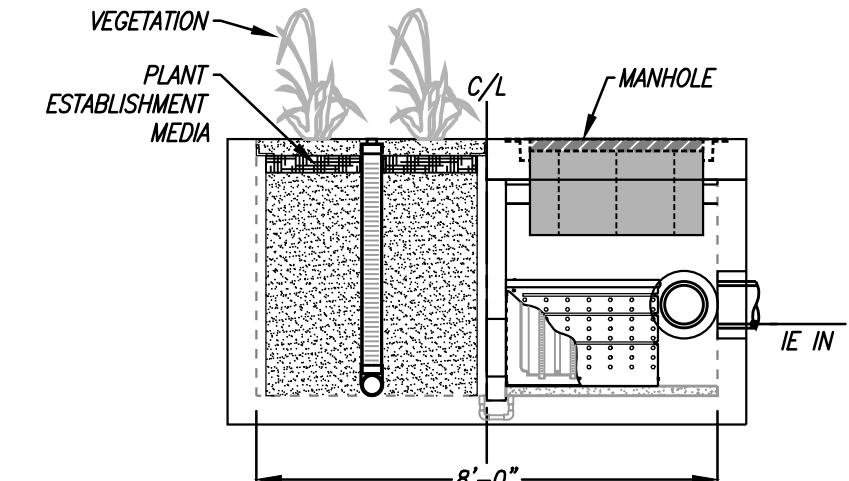
Pipe Storage:	3,151 cf	
Porous Stone Storage:	0 cf	
Total Storage Provided:	3,151 cf	100.4% Of Required Storage
Number of Barrels:	2 barrels	
Length per Barrel:	74.0 ft	
Length Per Header:	12.5 ft	
Rectangular Footprint (W x L):	12.5 ft x 79. ft	

System Layout

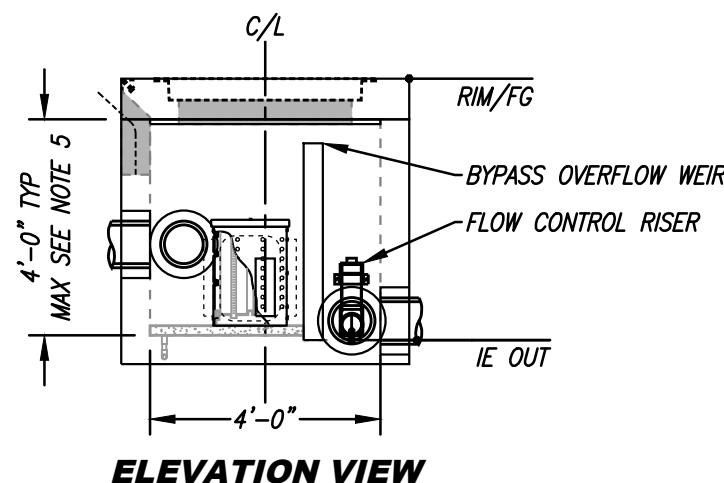
CONTECH Materials

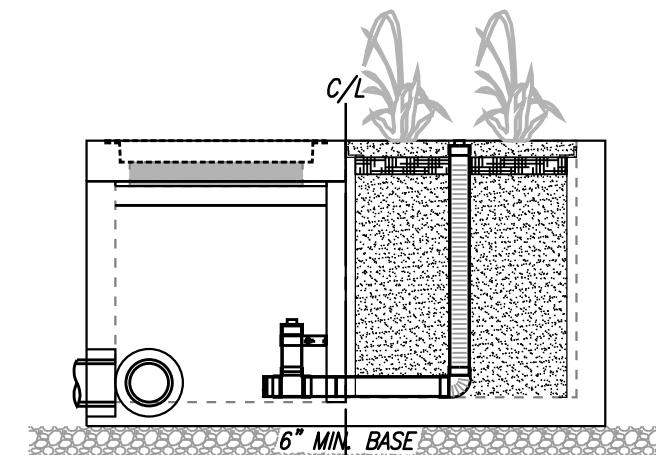

Total CMP Footage:	161 ft
Approximate Total Pieces:	9 pcs
Approximate Coupling Bands:	8 bands
Approximate Truckloads:	3 trucks

Construction Quantities**


Total Excavation:	330 cy
Porous Stone Backfill For Storage:	0 cy stone
Backfill to Grade Excluding Stone:	213 cy fill

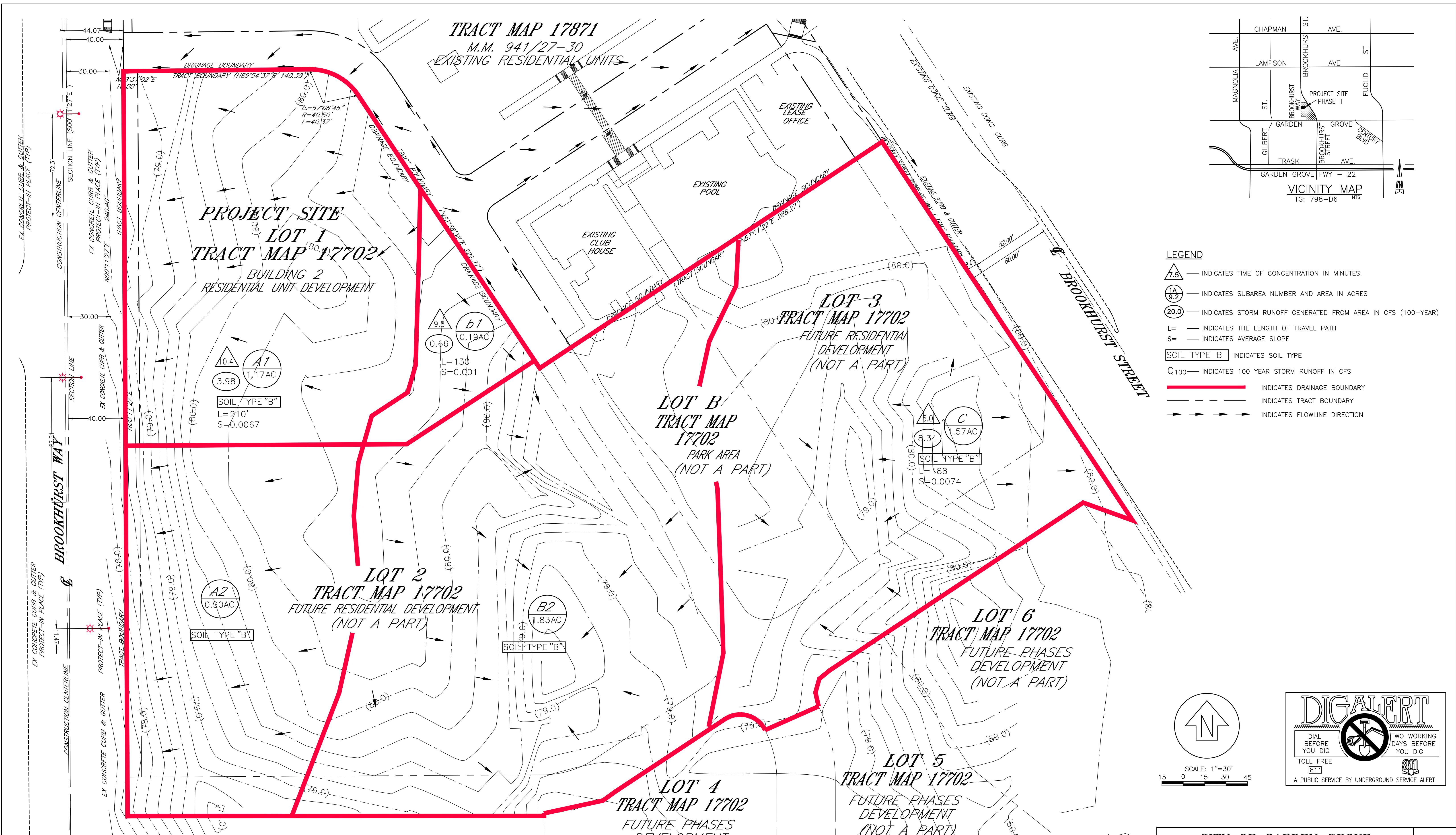
**Construction quantities are approximate and should be verified upon final design


SITE SPECIFIC DATA			
PROJECT NUMBER			
PROJECT NAME			
PROJECT LOCATION			
STRUCTURE ID			
TREATMENT REQUIRED			
TREATMENT FLOW (CFS)			
OPERATING HEAD (FT)			
PRETREATMENT LOADING RATE (GPM/SF)			
WETLAND MEDIA LOADING RATE (GPM/SF)			
PEAK BYPASS REQUIRED (CFS) - IF APPLICABLE			
PIPE DATA	I.E.	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION			
SURFACE LOAD			
NOTES:			


PLAN VIEW

LEFT END VIEW

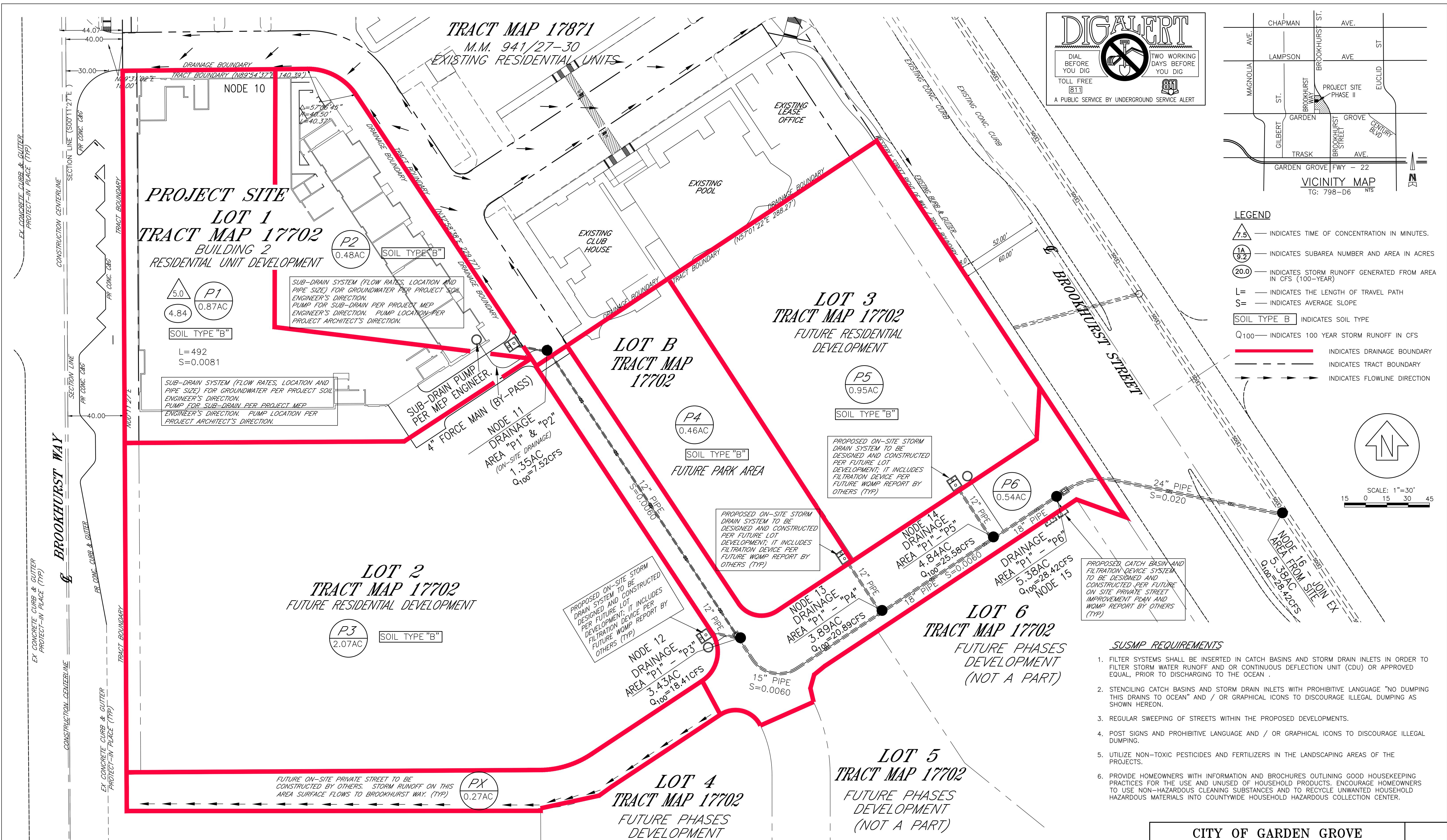
ELEVATION VIEW



RIGHT END VIEW

DCV Calculation Table:			DMA :	A1 *	
PR					
1	Enter design capture storm depth from Figure III.1, d (inches)		$d =$.77	inches
2	Enter the effect of provided HSCs, d_{HSC} (inches) (Worksheet A)		$d_{HSC} =$	0	inches
3	Calculate the remainder of the design capture storm depth, $d_{remainder}$ (inches) (Line 1 – Line 2)		$d_{remainder} =$.77	inches
Step 2: Calculate the DCV					
1	Enter Project area tributary to BMP (s), A (acres)		$A =$	1.353	acres
2	Enter Project Imperviousness, imp (unitless)		$imp =$	90.6	%
3	Calculate runoff coefficient, $C = (0.75 \times imp) + 0.15$		$C =$.83	
4	Calculate runoff volume, $V_{design} = (C \times d_{remainder} \times A \times 43560 \times (1/12))$		$V_{design} =$	3,126	cu-ft
Step 3: Design BMPs to ensure full retention of the DCV					
Step 3a: Determine design infiltration rate					
1	Enter measured infiltration rate, $K_{measured}$ (in/hr) (Appendix VII)		$K_{measured} =$	<i>Infiltration not deemed feasible</i>	in/hr
2	Enter combined safety factor from Worksheet H, S_{final} (unitless)		$S_{final} =$		
3	Calculate design infiltration rate, $K_{design} = K_{measured} / S_{final}$		$K_{design} =$		in/hr
Step 3b: Determine minimum BMP footprint					
4	Enter drawdown time, T (max 48 hours)		$T =$	<i>Refer to Worksheet D</i>	hours
5	Calculate max retention depth that can be drawn down within the drawdown time (feet), $D_{max} = K_{design} \times T \times (1/12)$		$D_{max} =$		feet
6	Calculate minimum area required for BMP (sq-ft), $A_{min} = V_{design} / d_{max}$		$A_{min} =$		sq-ft

*


DMA A1 _including Park, Basketball court & Alley areas

GG-2 PRE-DEVELOPMENT CONDITION-AREAS-B - middle portion of the site

GG-2 PRE-DEVELOPMENT CONDITION-AREAS-B - middle portion of the site																				
Area		Duration	intensity	loss rate	impervious															
sub-area	A-total	TC	I	Fp	Aj	Ap	Fm	Fm	Q (cfs)	slope	Upper	Lower	H-DIFF	V	L	T (travel)	T(initial)	T-total		
			(FIG B-3)	(table C.2)	(Fig. C-4)	(=1-Aj)	(=Fp*Ap)	(total)	(Avg)	(EQ. D.4)			Elevation							
B1	0.19	0.188	9.75	4.20	0.30	0.00	1.00	0.30	0.06	0.30	0.66	0.0100	80.80	79.50	1.30	130	9.8	9.8	Initial area	
B2	1.83	2.020	12.90	3.70	0.30	0.00	1.00	0.30	0.61	0.30	6.18	0.0043	79.50	78.60	0.90	1.10	208	3.2	12.9	Lot 2

GG-2 PRE-DEVELOPMENT CONDITION-AREAS-A - West to Brookhurst Way

		(NOT A PART)	
		HYDROLOGY MAP OF TRACT MAP 17702, LOT 1 (PHASE II OF GARDEN GROVE TRIANGLE)	
		SHEET 2 OF 2	
		REVISIONS	
		NO. DATE	DESCRIPTION
		POST-DEVELOPMENT CONDITION	
		G-000	EXHIBIT "I"
		E-MAIL: focusengring@sbcglobal.net	
		203-07-13	
		SOIL ENGINEER: QUARTECH CONSULTANTS GEOTECHNICAL	
		PREPARED BY: FOCUS ENGINEERING, INC.	
		8 CORPORATE PARK, SUITE 300 IRVINE, CA 92606 TEL: (949) 450-0590	
		576 E. LAMBERT ROAD BREA, CA 92821 TEL: (714) 671-1050 FAX: (714) 671-1090	
		E-MAIL: www.callandeng.com	
		OWNER: KAM SANG COMPANY, INC.	
		411 E. HUNTINGTON DRIVE, #305 ARCADIA, CA 91006 TEL: (626) 446-2988 FAX: (626) 446-3392 E-MAIL: www.kamsangcompany.com	

Tract No. 17702 - GG-2 Line A - Building #2 to existing SD at Brookhurst Street

TRACT MAP 17702 - LOT 1 - BUILDING NO.2

WQMP - BMP DCV CALCULATION SHEET

1	Drainage Area (A)	58956	SF
		1.353	AC
2	Impervious area	53428	SF
3	LS area	5528	SF
4	% of Impervious area	90.6%	
5	% of pervious area	9.4%	
6	Design Storm Depth (D)	0.77	inches
7	Time of Concentration (TC)	5	Min
8	Rainfall intensite (I)	0.265	in/hr
9	Runoff Coefficient (C)	0.9	
10	Design DCV (Demand)	3405	CF
11	Design QDCV (Demand)	0.325	CFS

APPENDIX B -AMENDMENT 1
CONSTRUCTION MATERIALS

GRADING GENERAL NOTES:

48 HOUR ADVANCE NOTICE IS REQUIRED PRIOR TO THE START OF ANY WORK (714) 741-5887

- ALL WORK SHALL CONFORM TO THE CITY OF GARDEN GROVE LATEST ORDINANCE NO. 2835, STANDARD PLANS AND SPECIFICATIONS, THE 2021 STANDARD SPECIFICATIONS OF THE STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION, THE CITY OF GARDEN GROVE ORDINANCE NO. 2590, THE 2022 CALIFORNIA BUILDING CODE, AND THE STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION (GREENBOOK) 2021 EDITION.
- THE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS AND NOTIFY THE CITY OF GARDEN GROVE WATER DEPARTMENT AND ALL OTHER UTILITY COMPANIES A MINIMUM OF 48 HOURS PRIOR TO THE START OF CONSTRUCTION. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO COORDINATE ALL PHASES OF CONSTRUCTION WITH THE VARIOUS UTILITY COMPANIES INVOLVED.
- SUBMITTAL DOCUMENT REQUIREMENTS SHALL AT A MINIMUM, CONFORM TO ALL REQUIREMENTS OF SECTIONS 107 AND 110 OF THE CALIFORNIA BUILDING CODE, INCLUDING THE FOLLOWING:
 - A. GRADING PLAN WITH SITE PLAN SHOWING TO SCALE THE SIZE AND LOCATION OF NEW CONSTRUCTION AND EXISTING STRUCTURES ON THE SITE AND ADJACENT TO THE SITE A MINIMUM OF THIRTY FEET (30') FROM THE PROPERTY BOUNDARY;
 - B. HORIZONTAL AND VERTICAL DISTANCES AND ELEVATIONS IN RELATION TO THE PROPERTY LOT LINES AND NEAREST CITY BENCHMARKS FOR TOPOGRAPHIC CONTROL. (TEMPORARY BENCH MARKS SHALL NOT BE USED FOR TOPOGRAPHIC CONTROL);
 - C. EXISTING STREET GRADES AND PROPOSED DESIGN GRADES FOR ALL PROJECT FRONTRAGES AND ADJACENT ACCESS IMPROVEMENTS.
 - D. ALL SITE/GRADING PLANS SHALL BE BASED UPON AN ACCURATE BOUNDARY LINE SURVEY WITH MONUMENT AND HORIZONTAL/VERTICAL CONTROL DISPOSITION SHOWN ON THE PLANS;(SECTION 107.2.5 CALIFORNIA BUILDING CODE);
 - E. DEMOLITION WORK FOR IMPROVEMENTS TO BE REMOVED AND/OR PROTECTED IN PLACE;
 - F. ANY PHASING OF IMPROVEMENTS AS ALLOWED BY THE CITY.
- THE CONTRACTOR SHALL OBTAIN A SEPARATE PERMIT FOR ALL WORK WITHIN THE STREET RIGHT-OF-WAY. TEMPORARY A.C. PAVING SHALL BE PLACED WHERE SIDEWALK REMOVALS EXTEND LONGER THAN (24) TWENTY-FOUR HOURS AS DIRECTED BY THE CITY INSPECTOR.
- DUST SHALL BE CONTROLLED BY WATERING AND IN FULL CONFORMANCE WITH THE REQUIREMENTS OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT GUIDELINES.
- SANITARY FACILITIES SHALL BE MAINTAINED ON SITE. FACILITIES SHALL BE LOCATED SUCH THAT SPILLS SHALL BE CONTAINED AND AT NO TIME ENTER A PUBLIC OR PRIVATE STORM DRAIN.
- PRIOR TO THE POURING OF ANY FOUNDATION MATERIALS, THE PAD ELEVATION AND THE BUILDING CORNERS MUST BE VERIFIED IN WRITING TO THE BUILDING SECTION BY THE REGISTERED CIVIL ENGINEER OR THE LICENSED LAND SURVEYOR IN CONFORMANCE WITH SECTION 1612 OF THE CALIFORNIA BUILDING CODE.
- NO FILL SHALL BE PLACED UNTIL THE BUILDING OFFICIAL AND THE SOILS ENGINEER APPROVE PREPARATION OF GROUND.
- FILLS SHALL BE COMPACTION THROUGHOUT TO 90% DENSITY AS DETERMINED BY A.S.T.M. D1557, A.S.T.M. D1556 (SAND CONE), AND/OR A.S.T.M. D2922, (NUCLEAR). SAND CONE METHOD MUST REPRESENT NO MORE THAN 20% OF TESTING. DRIVE TUBE TESTING IS NOT PERMITTED.
- FILL SLOPES SHALL BE NO STEEPER THAN 2 HORIZONTAL TO 1 VERTICAL AND SHALL HAVE NOT LESS THAN 90% COMPACTION OUT TO THE FINISH SURFACE.
- IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE THE UTILITIES OF EVERY NATURE WHETHER SHOWN HEREON OR NOT AND TO PROTECT THEM FROM DAMAGE. THE CONTRACTOR SHALL BEAR TOTAL COST OF REPAIR OR REPLACEMENT OF SAID UTILITIES DAMAGED BY OPERATIONS.
- IN ACCORDANCE WITH SPECIFICATIONS AND CODES REFERENCED IN PARAGRAPH 1; CONSTRUCTION DOCUMENTS AND A SCHEDULE FOR DEMOLITION SHALL BE SUBMITTED WHERE REQUIRED BY THE CITY ENGINEERING DIVISION AND OR BUILDING SERVICES DIVISION. WHERE SUCH INFORMATION IS REQUIRED, NO WORK SHALL BE DONE UNTIL SUCH CONSTRUCTION DOCUMENTS OR SCHEDULE, OR BOTH, ARE APPROVED.
- THE CONTRACTOR SHALL MAKE PROVISIONS TO HAVE ALL EXISTING ON-SITE SEWER, WATER, GAS, ELECTRIC, IRRIGATION OR TELEPHONE LINES REMOVED, ABANDONED, OR RELOCATED IF THEY ARE INTERFERING WITH THE PROPOSED CONSTRUCTION.
- THE CONTRACTOR SHALL REMOVE, CAP, AND ABANDON ALL EXISTING ON-SITE WATER WELLS, CESSPOOLS, OR SEPTIC TANKS ENCOUNTERED DURING GRADING IN ACCORDANCE WITH THE LATEST EDITION OF THE UNIFORM PLUMBING CODE, THE DEPARTMENT OF HEALTH AND THE CITY MUNICIPAL CODE.
- ANY BROKEN OR DAMAGED IMPROVEMENTS ON ADJACENT PRIVATE PROPERTY OR PUBLIC RIGHT-OF-WAY SHALL BE REPLACED OR REPAIRED IN KIND AS DIRECTED BY THE CITY ENGINEER.
- TEMPORARY TRAFFIC CONTROL AND PEDESTRIAN ACCESS AND PROTECTION DURING CONSTRUCTION SHALL CONFORM TO THE DEPARTMENT OF PUBLIC WORKS AND DEVELOPMENT'S LATEST "PUBLIC CONVENIENCE AND TRAFFIC CONTROL SPECIFICATION" SHEET, AND THE "WATCH MANUAL" AS PUBLISHED BY THE APWA, CHAPTER 33 OF THE CALIFORNIA BUILDING CODE AND THE REQUIREMENTS OF THE CITY ENGINEER.
- ALL TRAFFIC CONTROL DEVICES SHALL BE INSTALLED, RELOCATED, OR REMOVED TO THE SATISFACTION OF THE CITY TRAFFIC ENGINEER.
- THE CONTRACTOR SHALL NOTIFY THE CITY ENGINEER PRIOR TO THE REMOVAL, PARTIAL REMOVAL OR TRIMMING OF TREES OVERHANGING OR LYING PARTIALLY OR FULLY WITHIN EXISTING RIGHT-OF-WAY.
- THE SOILS REPORT PREPARED BY CAL LAND ENGINEERING, INC. DATED OCTOBER 17, 2013; GEOTECHNICAL SOLUTIONS, INC. DATED SEPTEMBER 12, 2017; GEOCON WEST, INC. DATED MAY 10, 2023 AND ALL RECOMMENDATIONS CONTAINED THEREIN, SHALL BE MADE A PART OF THESE PLANS. SOILS REPORTS AND TESTING SHALL BE DONE BY A CIVIL OR GEOTECHNICAL ENGINEER REGISTERED IN THE STATE OF CALIFORNIA.
- PRIOR TO THE IMPORTATION OF ANY SOIL MATERIAL TO THIS SITE, AN INVESTIGATION SHALL BE MADE AND A REPORT FILED WITH THE BUILDING OFFICIAL. USE OF THE SOIL WILL NOT BE PERMITTED IF IT IS DETERMINED BY THE TEST RESULTS THAT THE EXPANSION INDEX IS IN EXCESS OF TWENTY (20). AN "R" VALUE TEST SHALL ALSO BE PERFORMED ON IMPORT SOIL AND RESULTS SUBMITTED TO THE GRADING ENGINEER. IMPORT SOIL SHALL BE CLEAN AND FREE OF ANY DEBRIS. FAILURE TO CONFORM TO THESE REQUIREMENTS SHALL BE CAUSE FOR REMOVAL AND REPLACEMENT OF SAID SOIL.

BASIS OF BEARINGS:
THE BEARINGS SHOWN HEREON ARE BASED ON THE CENTERLINE OF BROOKHURST STREET N32°58'38" W PER TRACT NO. 17871, M.B. 941-29-30.

BENCH MARK
CITY B.M. NO. GG-130:
NORTHEAST QUADRANT OF LAMPSON AVE. & BROOKHURST ST., 15' EAST OF B.C.R., 1' NORTH OF CURB FACE, IN SOUTHEAST CORNER OF A 16' X 4' CATCH BASIN.

ELEVATION=85.727' (NAVD 1988)

ROUGH GRADING PLAN

BROOKHURST TRIANGLE PHASE II

GARDEN GROVE, CA

SHEET INDEX

SHEET 1: TITLE SHEET
SHEET 2: INDEX SHEET
SHEET 3: QUANTITIES AND SECTIONS
SHEET 4: ROUGH GRADING - BUILDING AREA
SHEET 5: ROUGH GRADING - SOUTHERLY SITE
SHEET 6: EROSION CONTROL SHEET
SHEET 7: EROSION CONTROL DETAIL
SHEET 8: EROSION CONTROL DETAIL (CONT)

EARTHWORK CALCULATION:

CUT AREA: - - - - - 1.36 ACRES
FILL AREA: - - - - - 0.20 ACRES
CUT VOLUME: 23600 C.Y.
FILL VOLUME: 900 C.Y.
3' OVER-EXCAVATION: 5000 C.Y.
STOCKPILE (ONSITE): 1800 C.Y.
RAW EXPORT VOLUME: 15900 C.Y.

NOTE: 24 HOUR ADVANCE NOTICE IS REQUIRED PRIOR TO THE START OF ANY WORK (714) 741-5887

NOTE: SECTION 4216/4217 OF THE GOVERNMENT CODE REQUIRES A DIG ALERT IDENTIFICATION NUMBER BE ISSUED BEFORE A PERMIT TO EXCAVATE WILL BE VALID. FOR YOUR DIG ALERT ID NUMBER CALL UNDERGROUND SERVICE ALERT TOLL FREE "811".

2

IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE THAT ALL IMPORTED AND EXPORTED SOIL IS FREE OF THE RED IMPORTED FIRE ANT (RIFA).

44

ALL WORK SHALL BE IN CONFORMANCE WITH THE LATEST NPDES PERMIT AND CITY OF GARDEN GROVE LOCAL IMPLEMENTATION PLAN (LIP) AND ADOTTED LOW IMPACT DEVELOPMENT (LID) REQUIREMENTS. COPIES OF APPROVED EROSION CONTROL PLANS AND STORM WATER POLLUTION PREVENTION PLAN (SWPPP) WHERE REQUIRED, SHALL BE AT THE CONSTRUCTION SITE AT ALL TIMES AND MADE AVAILABLE UPON REQUEST FOR REVIEW AND IMPLEMENTATION.

43

IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE THAT ALL IMPORTED AND EXPORTED SOIL IS FREE OF THE RED IMPORTED FIRE ANT (RIFA).

44

ALL ON-SITE CATCH BASINS SHALL BE STENCILED NOTIFYING THE PUBLIC THAT NO DUMPING IS PERMITTED AND THAT ALL FLOWS DRAIN TO THE OCEAN. THE CONTRACTOR SHALL OBTAIN THE LATEST STENCIL FROM THE CITY STREETS DIVISION 714.741.5278.

45

REFERENCES

46

* GREEN BOOK TABLE 203-6.4.3 (A)

* PHASE I PRECISE GRADING PLAN - G-1301

* TRACT MAP 17871 STREET IMPROVEMENT PLAN - A-1857

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

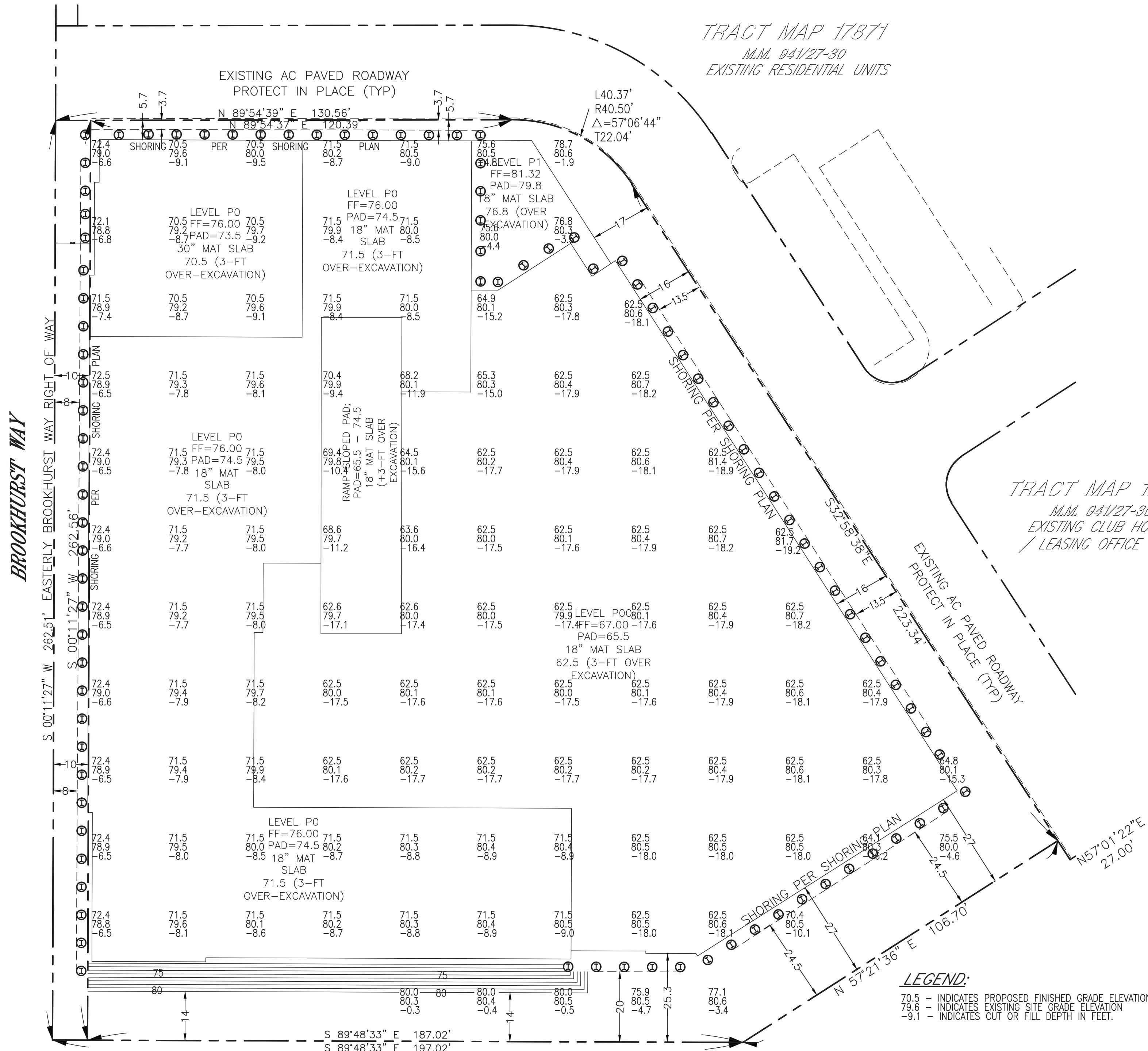
149

150

151

152

153


154

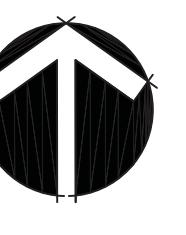
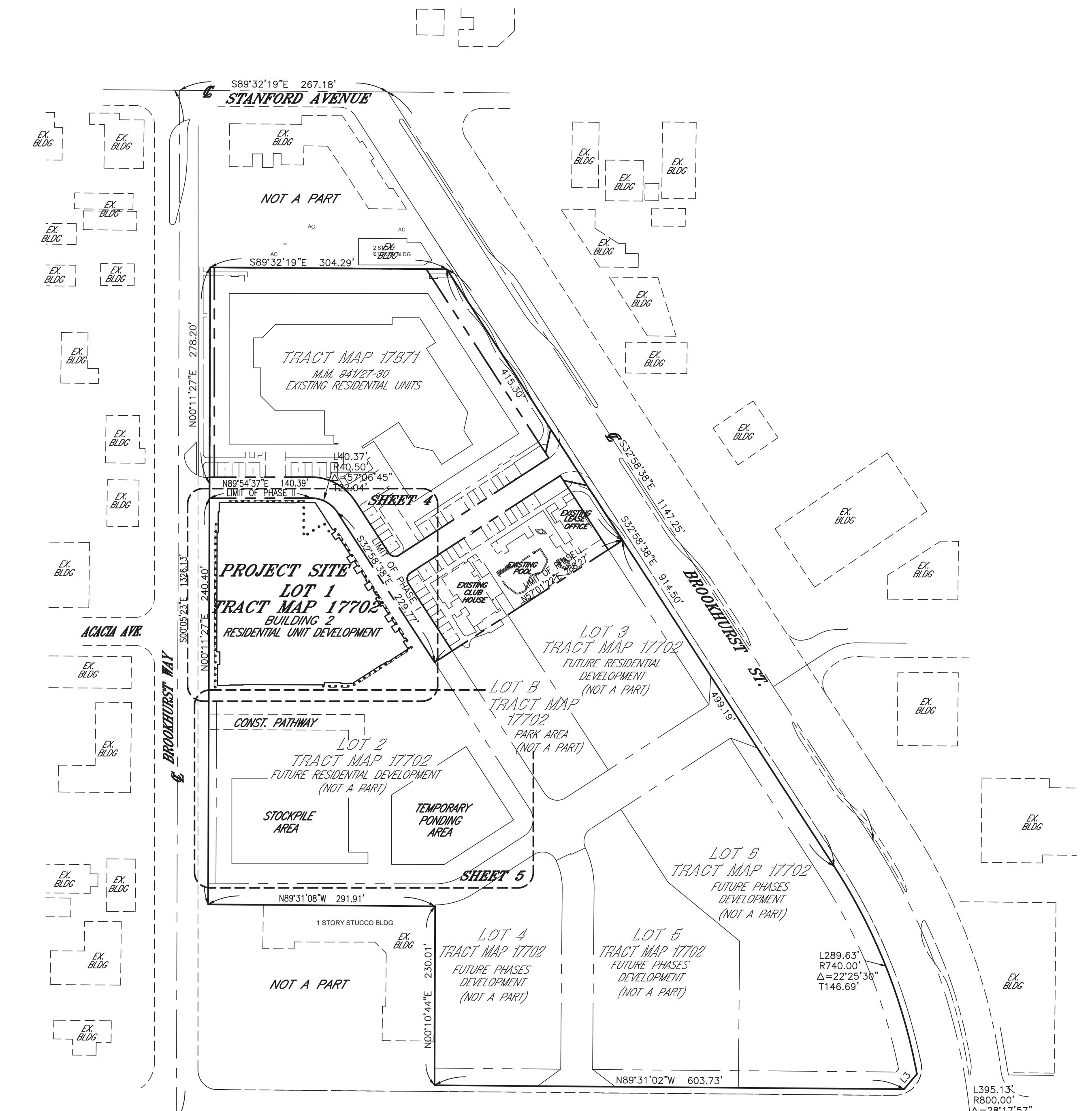
155

156

157

158

ENGINEER'S NOTICE:



1. CONTRACTOR AGREES THAT HE SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY. THIS REQUIREMENT SHALL APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS. THE CONTRACTOR SHALL DEFEND, INDEMNIFY AND HOLD THE OWNER AND ENGINEER HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT EXCEPTING FOR LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF THE OWNER OR ENGINEER.
2. ALL UNDERGROUND UTILITIES OR STRUCTURES, REPORTED OR FOUND ON PUBLIC RECORDS, ARE INDICATED WITH THEIR APPROXIMATE LOCATION AND EXTENT. THE OWNER, BY ACCEPTING THESE PLANS OR PROCEEDING WITH THE IMPROVEMENTS HEREON, AGREES TO ASSUME LIABILITY AND HOLD THE ENGINEERS HARMLESS FOR ANY DAMAGES RESULTING FROM THE EXISTENCE OF UNDERGROUND UTILITIES OR STRUCTURES NOT REPORTED OR INDICATED ON PUBLIC RECORDS, OR THOSE CONSTRUCTED AT VARIANCE WITH REPORTED OR RECORDED LOCATIONS. THE CONTRACTOR IS REQUIRED TO TAKE DUE PRECAUTIONARY MEASURES TO PROJECT THE UTILITIES OR STRUCTURES SHOWN AND ANY OTHER FOUND AT THE SITE. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO NOTIFY THE OWNERS OF ALL UTILITIES OR STRUCTURES CONCERNED BEFORE STARING WORK.
3. THE ENGINEER PREPARING THESE PLANS WILL NOT BE RESPONSIBLE FOR, OR LIABLE FOR UNAUTHORIZED CHANGES TO OR USED OF THESE PLANS. ALL CHANGES TO THESE PLANS MUST BE IN WRITING AND MUST BE APPROVED BY THE PREPARE OF THESE PLANS.
4. QUANTITIES SHOWN HEREON ARE PROVIDED FOR BONDING PURPOSES ONLY. CONTRACTORS SHALL BE RESPONSIBLE FOR VERIFYING ALL QUANTITIES PRIOR TO BIDDING FOR CONSTRUCTION.

NGVD 29 DATUM NOTE

ADD 2.11 FEET TO THE ELEVATION SHOWN ON THE PLAN (NGVD 29 DATUM)
IN ORDER TO ACHIEVE THE ELEVATION PER THE LISTED CITY BENCHMARK
CC-130 (NAVD 88 DATUM).

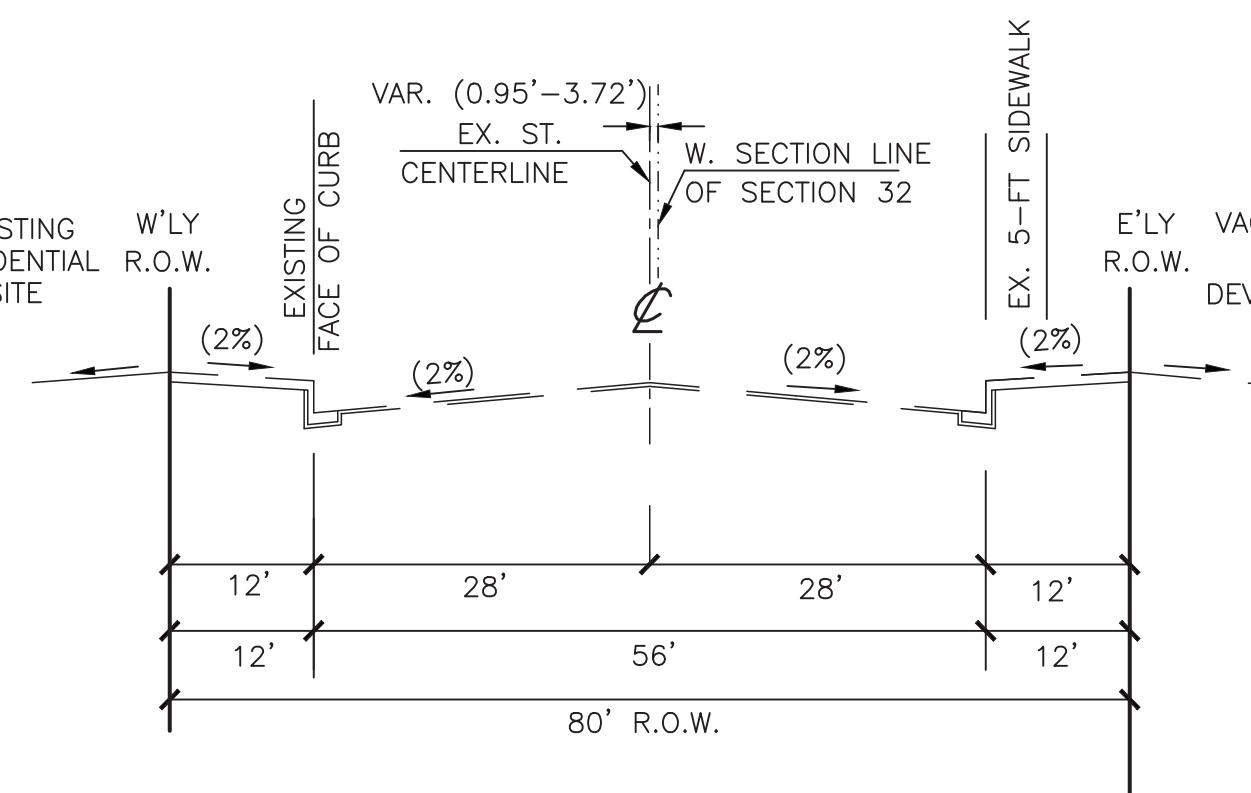
CALIFORNIA COUNCIL OF CIVIL ENGINEERS AND LAND SURVEYORS

CONSTRUCTION CONTRACTOR AGREES THAT IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT. INCLUDING SAFETY OF ALL PERSONS AND PROPERTY; THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND, INDEMNIFY AND HOLD DESIGN PROFESSIONAL HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK IN THIS PROJECT, EXCEPT LIABILITY ARISING FROM THE SOLE NEGLIGENCE OF DESIGN PROFESSIONAL.

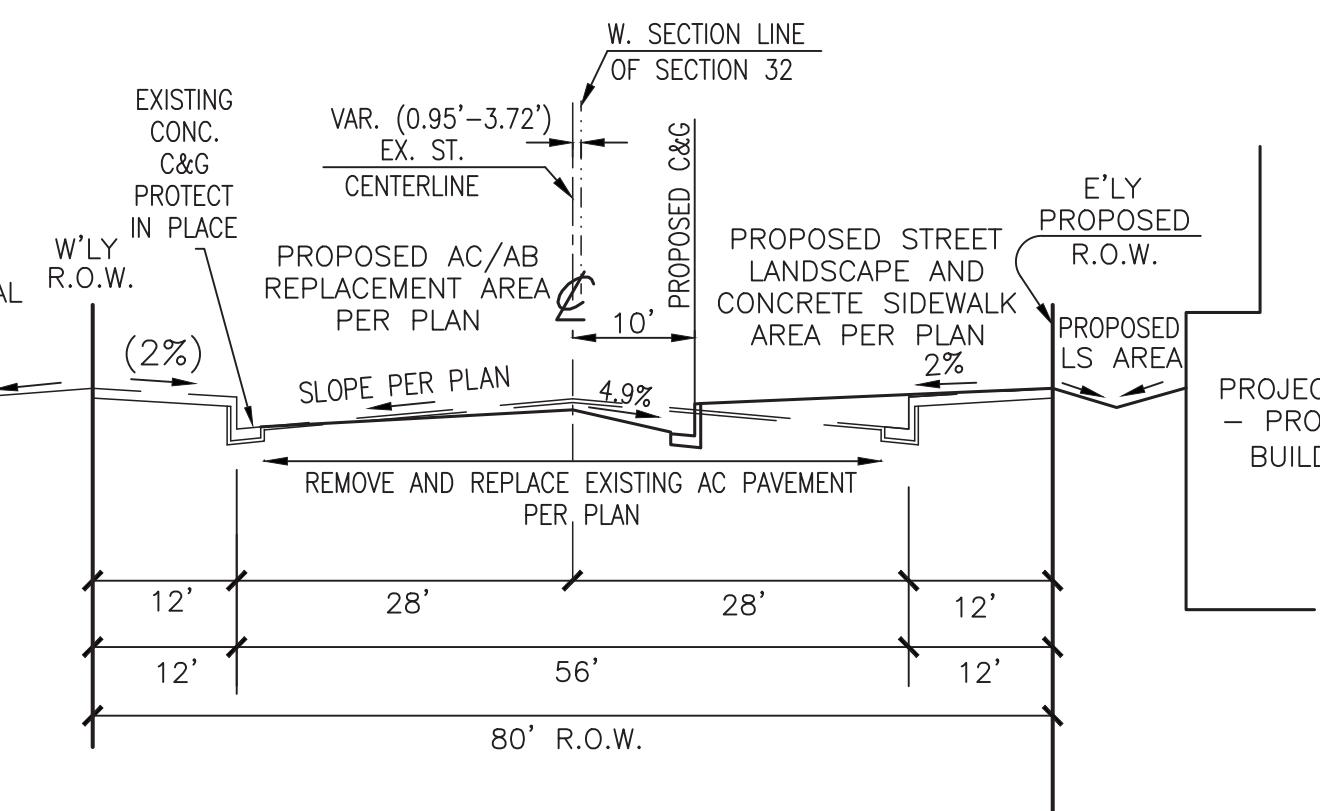
SCALE: NTS

SITE INDEX MAP

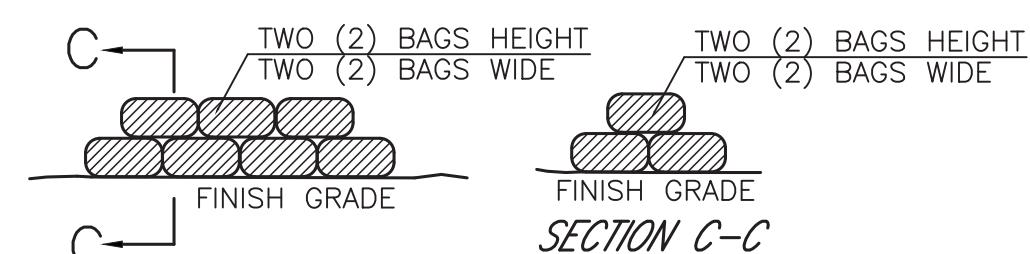
WDID #:

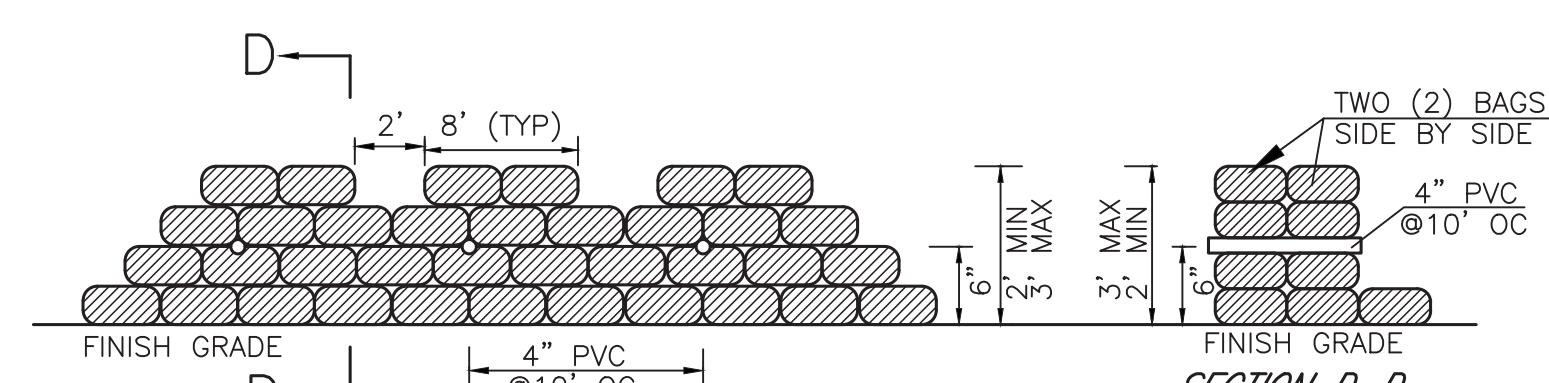

WDBD // 000101

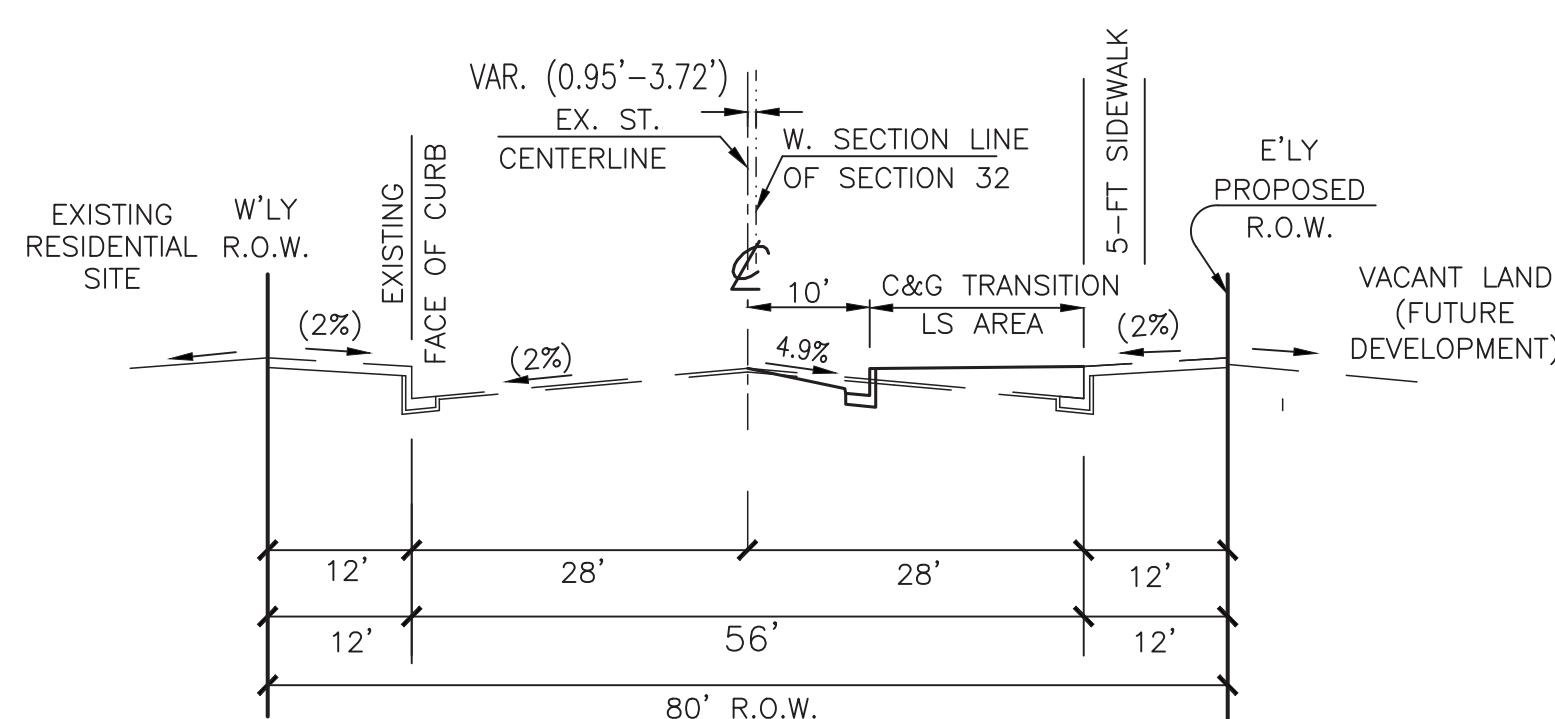
CITY OF GARDEN GROVE		SHEET 2 OF 8
ROUGH GRADING PLAN		
TRACT NO. 17702, LOT 1		
BROOKHURST TRIANGLE PHASE II		
NOTES & INDEX SHEET		
G-1558	PRINT: 2023-07-11	

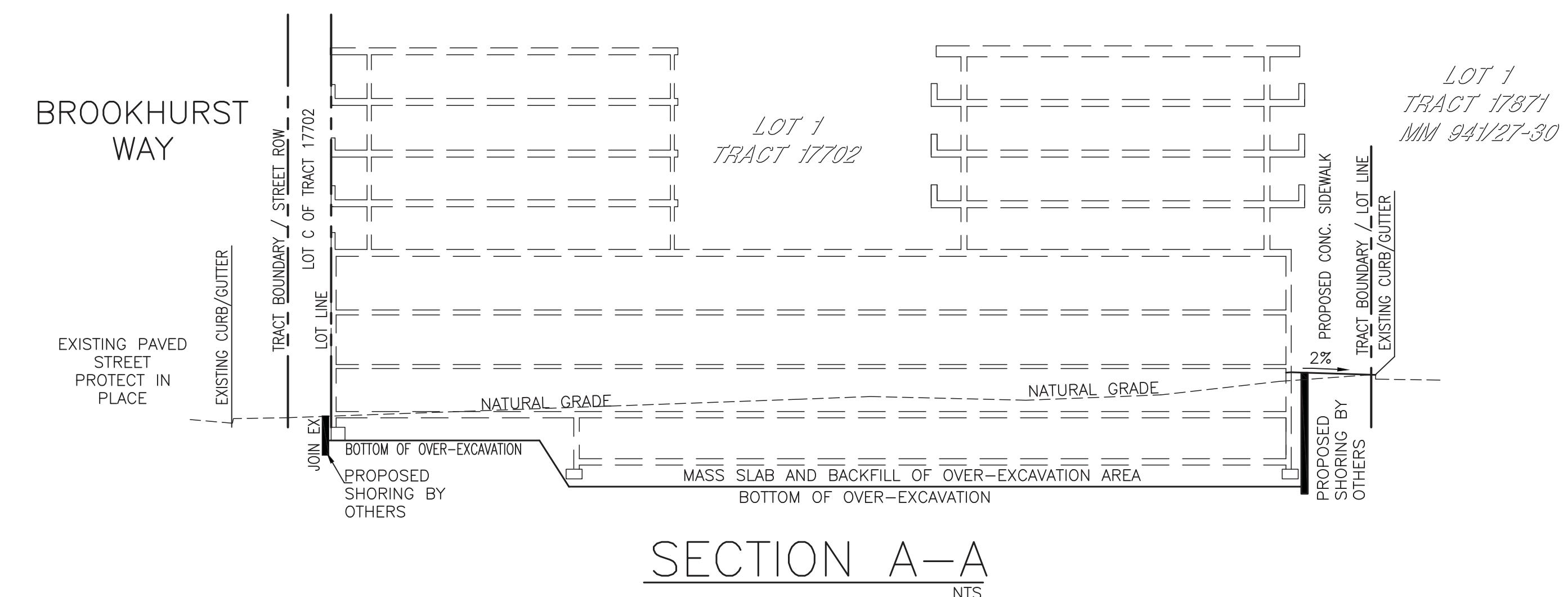

CONSTRUCTION NOTES

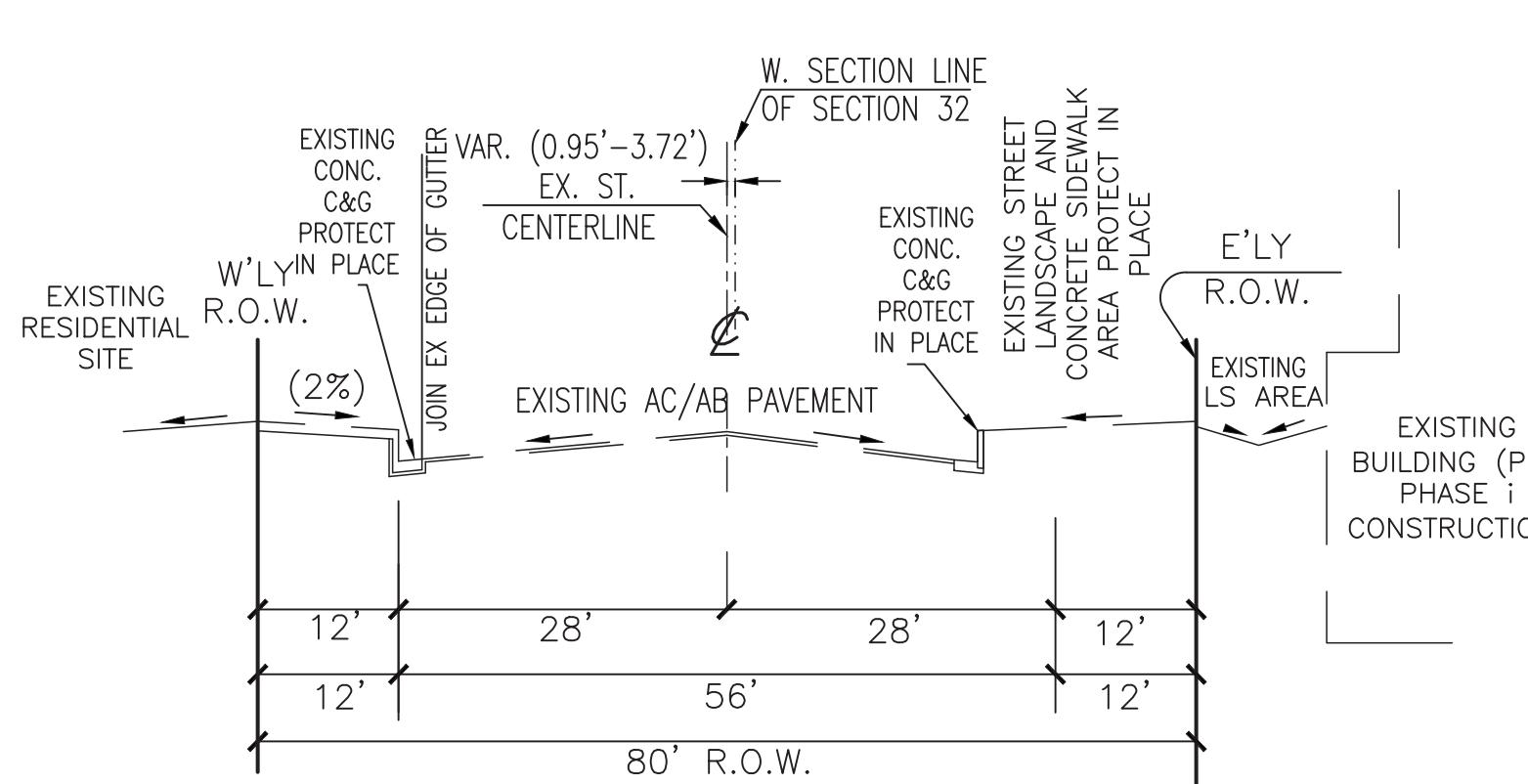
EROSION CONTROL CONSTRUCTION NOTES


(71) SE-1: INSTALL SILT FENCE PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. ----- 1660 LF
 (72) SE-5: INSTALL FIBER ROLLS PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. ----- 1660 LF
 (73) TC-1 & TC-3: INSTALL STABILIZED CONSTRUCTION ENTRANCE AND TIRE WASH PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. 1 EA
 (74) WM-1: INSTALL MATERIAL DELIVERY AND STORAGE PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. 1 EA
 (75) WM-8: INSTALL CONCRETE WASTE MANAGEMENT, CONCRETE WASHOUT CONTAINER, WATERPROOF, ABOVE GROUND METAL CONTAINER, CONSOLIDATED FABRICATORS OR EQUIVALENT AS SHOWN ON SHEET 8 AND PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION 1 EA
 (76) SE-6: INSTALL GRAVEL BERM PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. ----- 1350 LF
 (77) EC-5: APPLY REINFORCED PLASTIC COVER OR SOIL BINDERS OR OTHER EROSION CONTROL MEASUREMENT ON ENGINEERING SLOPE PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. 1 LS
 (78) SE-3: CONSTRUCT SEDIMENT TRAP (1-FT IN DEPTH) PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. ----- 1 EA
 (79) SE-4: INSTALL CHECK DAMS PER DETAIL ON SHEET 3 AND CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. 1 EA
 (80) SE-7: PERFORM STREET SWEEPING AND VACUUMING PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. ----- 1 LS
 (81) WM-9: INSTALL TEMPORARY SANITARY / SEPTIC FACILITIES, PORTABLE TOILETS, PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION. ----- 1 LS

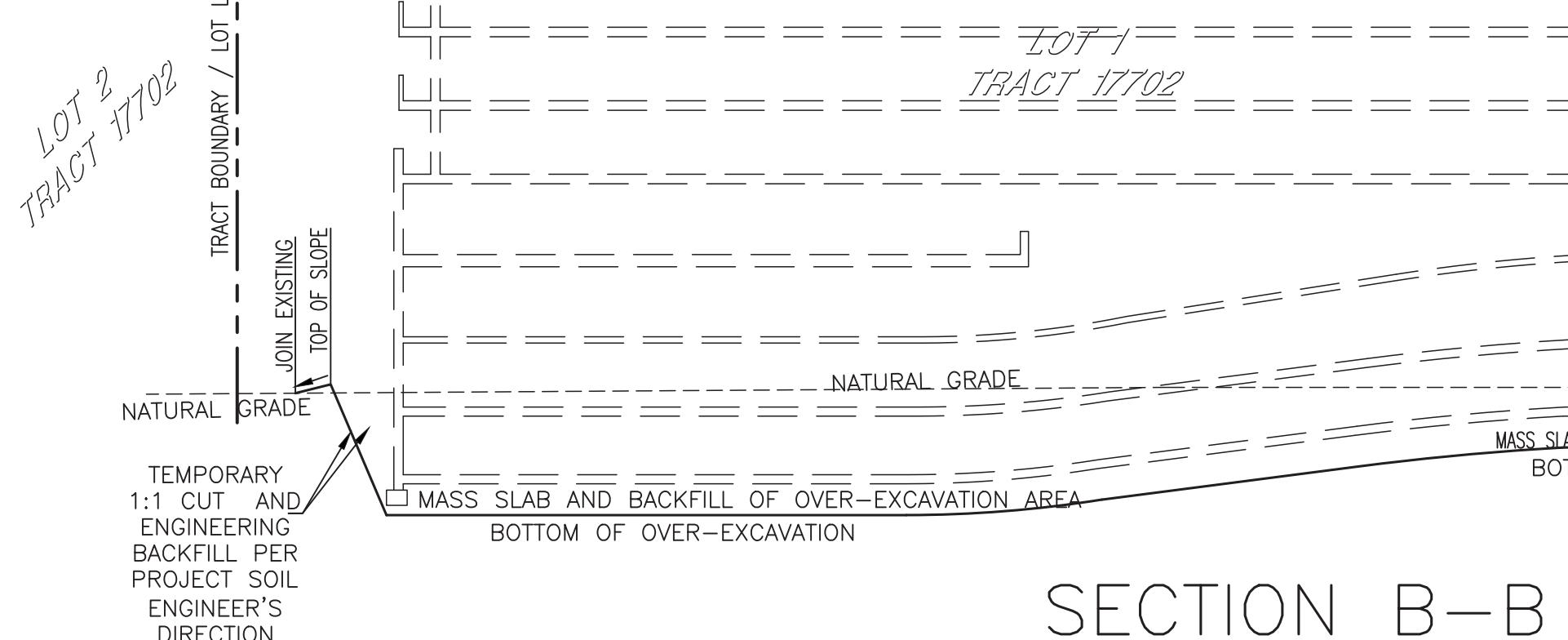

BROOKHURST WAY
(STA. 13+00.00 - 14+11.38) NTS

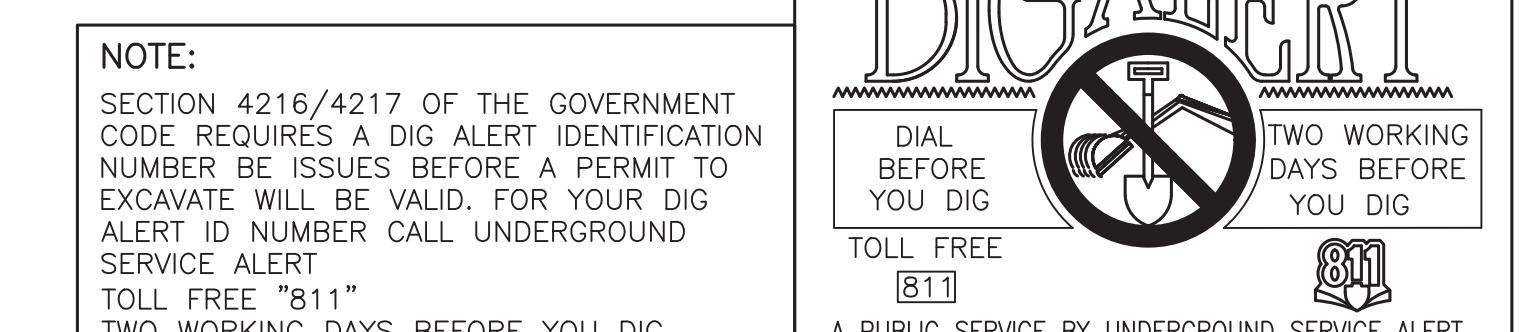

BROOKHURST WAY
(STA. 15+11.44 - 15+99.94) NTS
(STA. 17+43.50 - 17+72.27) NTS


TYPICAL SECTION - GRAVEL BAG NTS


TYPICAL SECTION - CHECK DAM GRAVEL BAG
(TO BE USED AT FINAL STORM DRAIN RELEASE LOCATION) NTS

BROOKHURST WAY
(STA. 14+11.38 - 15+11.44) NTS


SECTION A-A
NTS


BROOKHURST WAY
(STA. 15+99.94 - 17+43.50) NTS

BROOKHURST WAY
(STA. 18+55 - 19+50) NTS

NGVD 29 DATUM NOTE:
ADD 2.11 FEET TO THE ELEVATION SHOWN ON THE PLAN (NGVD 29 DATUM)
IN ORDER TO ACHIEVE THE ELEVATION PER THE LISTED CITY BENCHMARK NO.
GG-130 (NAVD 88 DATUM)

SECTION B-B
NTS

WDID #: 563194

CITY OF GARDEN GROVE

ROUGH GRADING PLAN
TRACT NO. 17702, LOT 1
BROOKHURST TRIANGLE PHASE II
QUANTITIES, SECTIONS & DETAILS

SHEET
3
OF
8

BASIS OF BEARINGS:
THE BEARINGS SHOWN HEREON ARE BASED ON THE CENTERLINE OF BROOKHURST STREET
N32°58'38"W PER TRACT NO. 17871, M.B. 941-29-30.

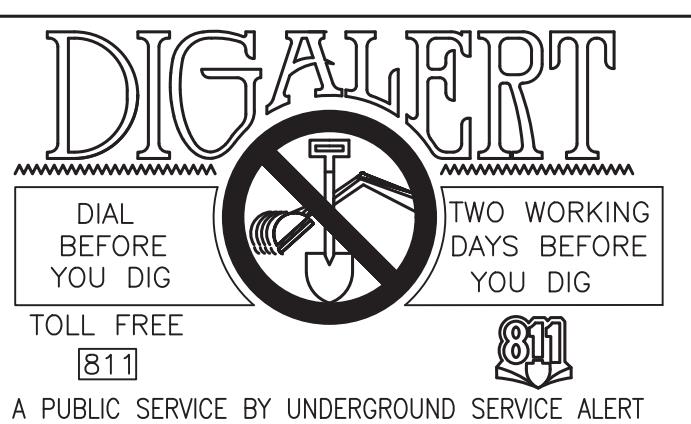
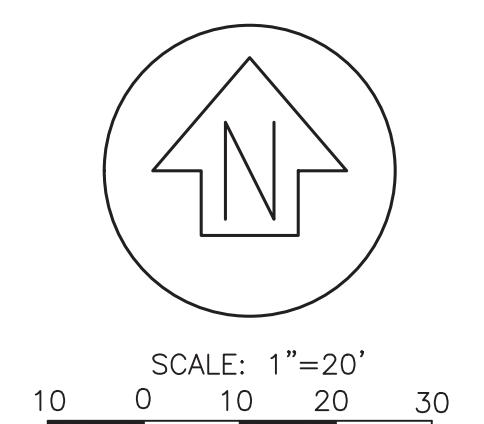
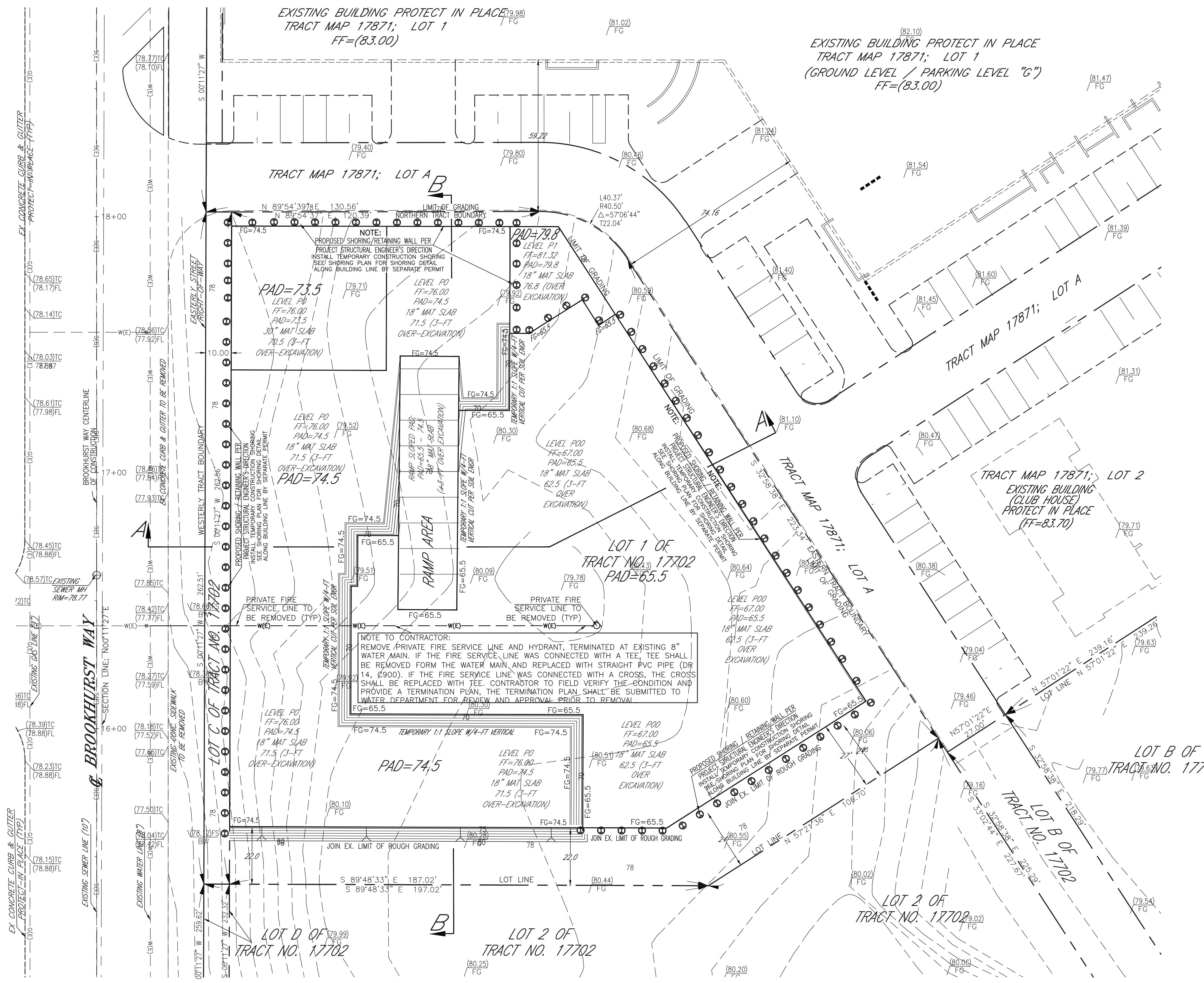
BENCH MARK
CITY B.M. NO. GG-130:
NORTHEAST QUADRANT OF LAMPSON AVE. & BROOKHURST ST., 15' EAST OF B.C.R., 1'
NORTH OF CURB FACE, IN SOUTHEAST CORNER OF A 16' X 4' CATCH BASIN.

ELEVATION=85.727' (NAVD 1988)

OWNER:
KAM SANG COMPANY, INC.
411 E. HUNTINGTON DRIVE, #305
ARCADIA, CA 91006
TEL: (626) 446-2988
FAX: (626) 446-3392
E-MAIL: www.kamsangcompany.com

SOIL ENGINEER:
GEOCON WEST, INC.
GEOTECHNICAL
2807 McGAW AVENUE
IRVINE, CA 92618
TEL: (949) 491-6570
FAX:
E-MAIL: OC@GEOCONINC.COM

PREPARED BY:
FOCUS ENGINEERING, INC.
8 CORPORATE PARK, SUITE 300
IRVINE, CA 92606
TEL: (949) 450-0590
E-MAIL: focusengring@sbcglobal.net

REVISIONS

NO.	DATE	DESCRIPTION

G-1558

PRINT: 2023-07-11

LEGEND:	
HP	HIGH POINT
TC	TOP OF CURB
FL	FLOW LINE
FS	FINISHED SURFACE
FG	FINISHED GRADE
FF	FINISHED FLOOR
GF	GARAGE FLOOR
PAD	PAD
TW	TOP OF WALL
TF	TOP OF FOOTING
H	HEIGHT
L	LENGTH
P	PROPERTY LINE
R/W	RIGHT-OF-WAY
—	EXISTING CONTOURS
—	PROPOSED CONTOURS
—	CUT/FILL DAYLIGHT LINE
—	CHAIN LINK FENCE
—	SD—SUBDRAIN PIPE
—	SD—SUBDRAIN COLLECTION SYSTEM
—	SD—PROPOSE STORM DRAIN
—	SD—PROPOSE SEWER LINE
—	—W(E)—EX. WATER LINE
(120)	EXISTING ELEVATION
120	PROPOSED ELEVATION
TBM	TEMPORARY BENCH MARK
BM	BENCH MARK
C	CUT
F	FILL
N	NATURAL
PP	POWER POLE
FH	FIR HYDRANT
BW	BACK OF WALK

WDID #: 563194

CITY OF GARDEN GROVE		SHEET
ROUGH GRADING PLAN		
TRACT NO. 17702, LOT 1		4
BROOKHURST TRIANGLE PHASE II		OF
ROUGH GRADING PLAN - BUILDING #2		8
G-1558		PRINT: 2023-07-11

BASIS OF BEARINGS:
THE BEARINGS SHOWN HEREON ARE BASED ON THE CENTERLINE OF BROOKHURST STREET
N32°58'38"W PER TRACT NO. 17871, M.B. 941-29-30.

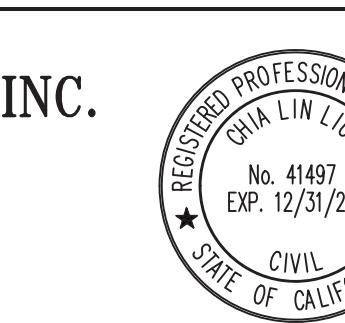
BENCH MARK
CITY B.M. NO. GG-130:
NORTHEAST QUADRANT OF LAMPSON AVE. & BROOKHURST ST., 15' EAST OF B.C.R., 1'
NORTH OF CURB FACE, IN SOUTHEAST CORNER OF A 16' X 4' CATCH BASIN.

ELEVATION=85.727' (NAVD 1988)

SEE SHEET 5

OWNER:
KAM SANG COMPANY, INC.

411 E. HUNTINGTON DRIVE, #305
ARCADIA, CA 91006
TEL: (626) 446-2988
FAX: (626) 446-3392
E-MAIL: www.kamsangcompany.com

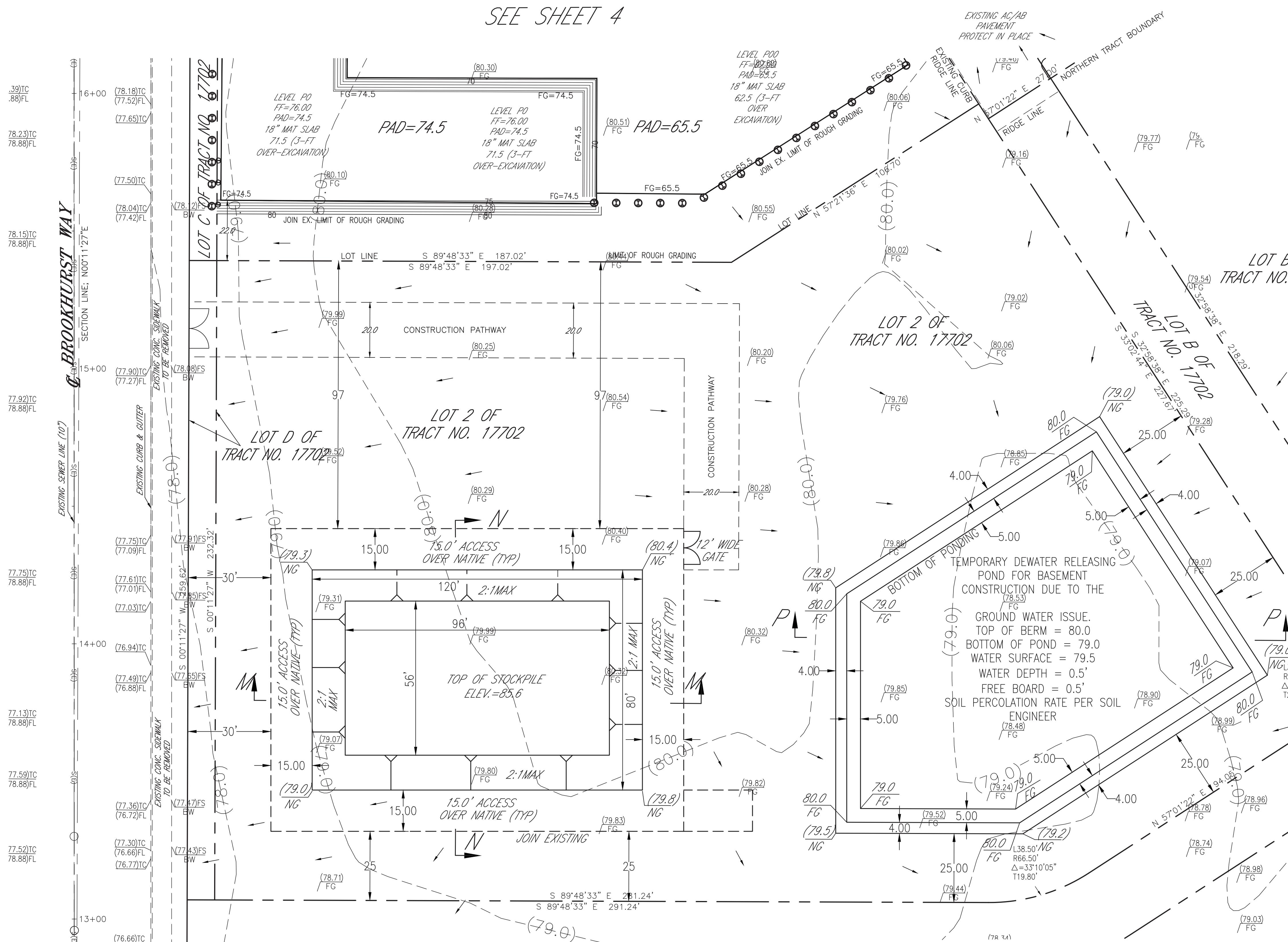

ELEVATION=85.727' (NAVD 1988)

SOIL ENGINEER:
GEOCON WEST, INC.
GEOTECHNICAL

2807 McGAW AVENUE
IRVINE, CA 92618
TEL: (949) 491-6570
FAX:
E-MAIL: OC@GEOCONINC.COM

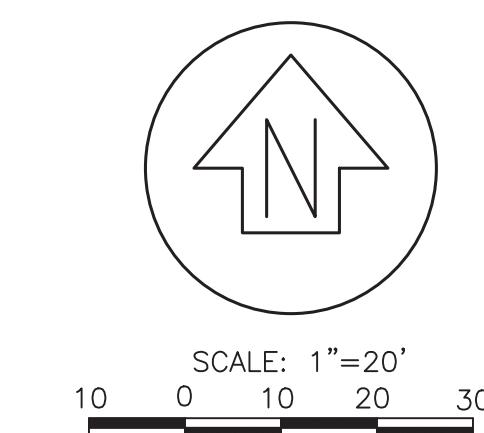
PREPARED BY:
FOCUS ENGINEERING, INC.

8 CORPORATE PARK, SUITE 300
IRVINE, CA 92606
TEL: (949) 450-0590
FAX:
E-MAIL: focusengr@sbcbglobal.net



REVISIONS

NO.	DATE


DESCRIPTION

SEE SHEET 4

NGVD 29 DATUM NOTE:
ADD 2.11 FEET TO THE ELEVATION SHOWN ON THE PLAN (NGVD 29 DATUM) IN ORDER TO
ACHIEVE THE ELEVATION PER THE LISTED CITY BENCHMARK NO. GG-130 (NAVD 88 DATUM)

NOTE:
SECTIONS M-M, M-M & P-P
SEE SHEET 6 FOR DETAIL.

WDID #: 563194

WBID #: 888191

CITY OF GARDEN GROVE	
ROUGH GRADING PLAN	
TRACT NO. 17702, LOT 1	
BROOKHURST TRIANGLE PHASE II	
ROUGH GRADING PLAN - BUILDING #2	
G-1558	PRINT: 2023-07-11

SHEET 5 OF 8

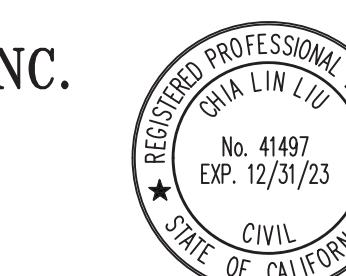
BASIS OF BEARINGS:
THE BEARINGS SHOWN HEREON ARE BASED ON THE CENTERLINE OF BROOKHURST STREET
N32°58'38" W PER TRACT NO. 17871, M.B. 941-29-30.

BENCH MARK
CITY B.M. NO. GG-130:
NORTHEAST QUADRANT OF LAMPSON AVE. & BROOKHURST ST., 15' EAST OF B.C.R., 1'
NORTH OF CURB FACE, IN SOUTHEAST CORNER OF A 16' X 4' CATCH BASIN.

ELEVATION=85.727' (NAVD 1988)

OWNER:

KAM SANG COMPANY, INC.

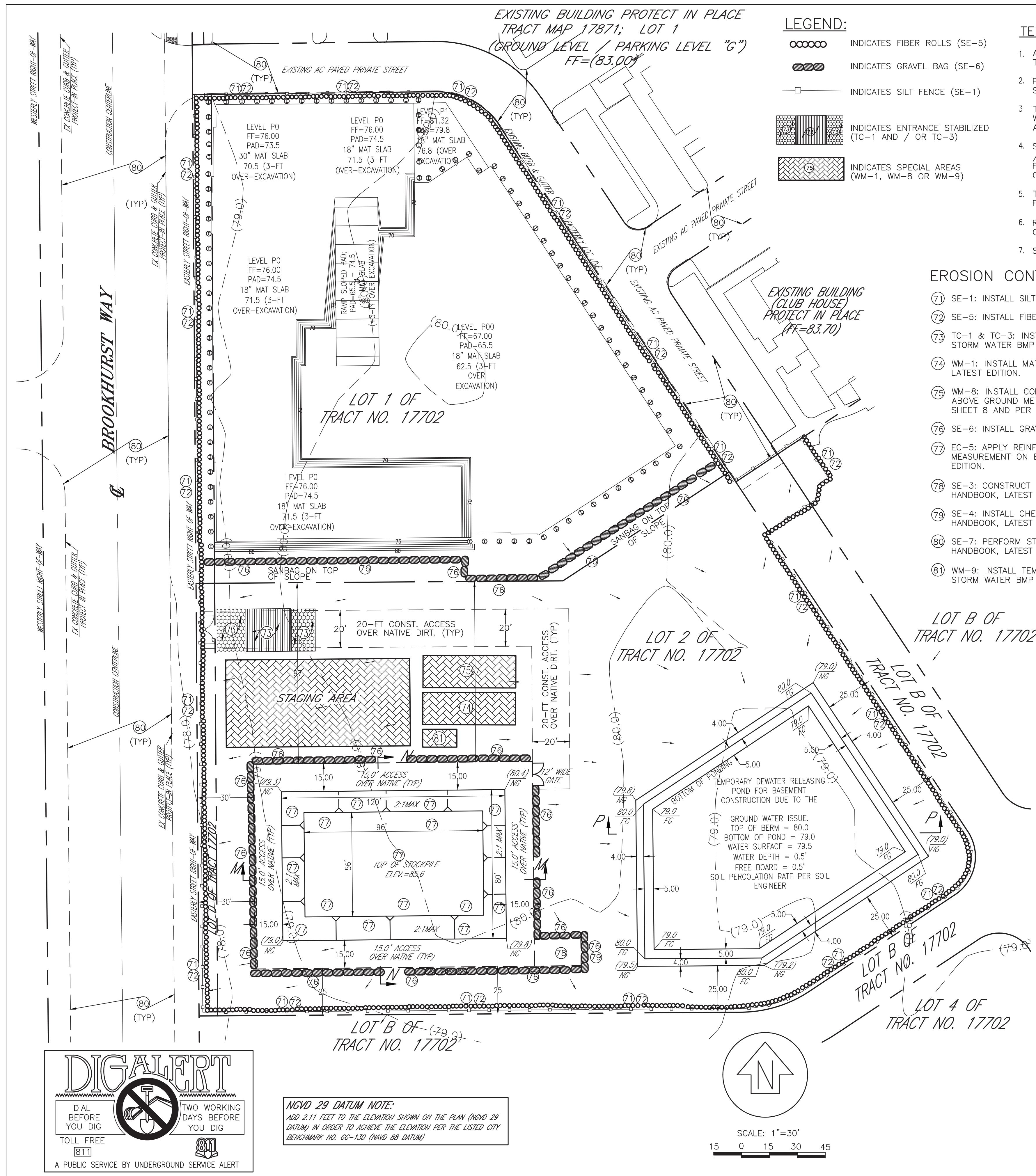

411 E. HUNTINGTON DRIVE, #305
ARCADIA, CA 91006
TEL: (626) 446-2988
FAX: (626) 446-3392
E-MAIL: www.kamsangcompany.com

SOIL ENGINEER:
GEOCON WEST, INC.
GEOTECHNICAL

GEOTECHNICAL
2807 McGAW AVENUE
IRVINE, CA 92618
TEL. (949) 491-6570
FAX.
EMAIL: OC@GEOCONINC.COM

PREPARED BY:
FOCUS ENGINEERING, INC.

8 CORPORATE PARK, SUITE 300
IRVINE, CA 92606
TEL: (949) 450-0590



REVISIONS

DESCRIPTION

- 1558

PRINT: 2023-07-11

BASIS OF BEARINGS:
THE BEARINGS SHOWN HEREON ARE BASED ON THE CENTERLINE OF BROOKHURST STREET
N32°58'38" W PER TRACT NO. 17871, M.B. 941-29-30.

BENCH MARK
CITY B.M. NO. GG-130:
NORTHEAST QUADRANT OF LAMPSON AVE. & BROOKHURST ST., 15' EAST OF B.C.R., 1'
NORTH OF CURB FACE, IN SOUTHEAST CORNER OF A 16' X 4' CATCH BASIN.

ELEVATION=85.727' (NAVD 1988)

OWNER:
KAM SANG COMPANY, INC.

411 E. HUNTINGTON DRIVE, #305
ARCADIA, CA 91006
TEL: (626) 446-2988
FAX: (626) 446-3392
E-MAIL: www.kamsangcompany.com

SOIL ENGINEER:
GEOCON WEST, INC.
GEOTECHNICAL

2807 McGAW AVENUE
IRVINE, CA 92618
TEL. (949) 491-6570
FAX.

EMAIL: OC@GEOCONINC.COM

PREPARED BY:
FOCUS ENGINEERING, INC.

8 CORPORATE PARK, SUITE 300
IRVINE, CA 92606
TEL: (949) 450-0590

REVISIONS

DESCRIPTION

TEMPORARY STOCKPILE NOTES:

1. ALL TEMPORARY / ACTIVE STOCKPILE SHOULD BE COVERED AND PROTECTED WITH A TEMPORARY LINEAR SEDIMENT BARRIER PRIOR TO THE ONSET OF PRECIPITATION.
2. PLASTIC TRAPS WITH NYLON REINFORCEMENT SHALL BE USED WHERE PLASTIC SHEETING IS NEED PRIOR TO THE ONSET OF PRECIPITATION.
3. THE DOWNSTREAM PERIMETER OF AN ACTIVE STOCKPILE SHOULD BE PROTECTED WITH A LINEAR SEDIMENT BARRIER OR BERM AND RUNOFF SHOULD BE DIVERTED AROUND OR AWAY FROM THE STOCKPILE ON THE UPSTREAM PERIMETER.
4. STOCKPILE MUST BE INSPECTED IN ACCORDANCE WITH CITY OF GARDEN GROVE AND / OR GENERAL PERMIT REQUIREMENTS. BMP BE INSPECTED WEEKLY, PRIOR TO FORECASTED RAIN EVENTS, DAILY DURING EXTENDED RAIN EVENTS AND AFTER THE CONCLUSION OF RAIN EVENTS.
5. THE STOCKPILE PLASTIC SHEETING MAY BE NECESSARY TO INSPECT MORE FREQUENTLY DURING HIGH WINDS OR EXTREME HEAT CONDITIONS.
6. REPAIR AND / OR REPLACE PERIMETER CONTROLS AND COVERS AS NEEDED IN ORDER TO KEEP IT FUNCTIONING PROPERLY.
7. SEDIMENT SHALL BE REMOVED.

EROSION CONTROL CONSTRUCTION NOTES

- (71) SE-1: INSTALL SILT FENCE PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (72) SE-5: INSTALL FIBER ROLLS PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (73) TC-1 & TC-3: INSTALL STABILIZED CONSTRUCTION ENTRANCE AND TIRE WASH PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (74) WM-1: INSTALL MATERIAL DELIVERY AND STORAGE PER CALIFORNIA STORM WATER BMP HANDBOOK LATEST EDITION.
- (75) WM-8: INSTALL CONCRETE WASTE MANAGEMENT, CONCRETE WASHOUT CONTAINER, WATERPROOF, ABOVE GROUND METAL CONTAINER, CONSOLIDATED FABRICATORS OR EQUIVALENT AS SHOWN ON SHEET 8 AND PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION
- (76) SE-6: INSTALL GRAVEL BAG BERM PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (77) EC-5: APPLY REINFORCED PLASTIC COVER OR SOIL BINDERS OR OTHER EROSION CONTROL MEASUREMENT ON ENGINEERING SLOPE PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (78) SE-3: CONSTRUCT SEDIMENT TRAP (1-FT IN DEPTH) PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (79) SE-4: INSTALL CHECK DAMS PER DETAIL ON SHEET 3 AND CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (80) SE-7: PERFORM STREET SWEEPING AND VACUUMING PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.
- (81) WM-9: INSTALL TEMPORARY SANITARY / SEPTIC FACILITIES, PORTABLE TOILETS, PER CALIFORNIA STORM WATER BMP HANDBOOK, LATEST EDITION.

EROSION CONTROL PLANS GENERAL NOTES

1. EROSION CONTROL IS REQUIRED FOR GRADING OPERATIONS DURING THE RAINY SEASON FROM OCTOBER 15TH TO APRIL 15TH APPROVED PLANS ARE REQUIRED FOR ALL ROUGH GRADING.
2. IN CASE OF EMERGENCY, CALL:

JOHN L. HICKS
RESPONSIBLE PERSON

KAM SANG COMPANY
FIRM

AT (626) 226-2988X17
24 HOURS PHONE NUMBER
3. THE DESIGN CIVIL ENGINEER WILL SUPERVISE EROSION CONTROL WORK AND ENSURE THAT WORK IS IN ACCORDANCE WITH THE APPROVED PLAN (IF REQUIRED).
4. EQUIPMENT AND WORKERS FOR EMERGENCY WORK SHALL BE MADE AVAILABLE AT ALL TIMES DURING THE RAINY SEASON. NECESSARY MATERIALS SHALL BE AVAILABLE ON SITE AND STOCKPILED AT CONVENIENT LOCATIONS TO FACILITATE REPAIR CONSTRUCTION OF TEMPORARY DEVICES WHEN RAIN IS IMMINENT.
5. DEVICE SHALL NOT BE MOVED OR MODIFIED WITHOUT THE APPROVAL OF THE CITY ENGINEER. REVISIONS SHALL BE PROMPTLY SUBMITTED TO THE CITY ENGINEER FOR APPROVAL.
6. ALL REMOVABLE PROTECTIVE DEVICES SHOWN SHALL BE IN PLACE AT THE END OF EACH WORKING DAY WHEN THE 5-DAY RAIN PROBABILITY FORECAST EXCEEDS 40%.
7. AFTER A RAINSTORM, ALL SILT AND DEBRIS SHALL BE REMOVED FROM GRAVEL BAGS, SILT FENCES, AND STABILIZING ENTRANCES AREA, ETC.
8. GRADED AREAS AROUND THE TRACT PERIMETER MUST DRAIN AWAY FROM THE FACE OF SLOPE AT THE CONCLUSION OF EACH WORKING DAY.
9. THE CONTRACTOR SHALL BE RESPONSIBLE AND SHALL TAKE NECESSARY PRECAUTIONS TO PREVENT PUBLIC TRESPASS ONTO AREAS WHERE IMPOUNDED WATER CREATES A HAZARDOUS CONDITION.
10. DESILTING BASINS ARE TO BE CONSTRUCTED AS GRADING OF INDIVIDUAL GRADING AREAS ARE COMPLETE PER ROUGH GRADING PLANS.
11. THE CITY ENGINEER RESERVES THE RIGHT TO MAKE CHANGES OR MODIFICATIONS TO THIS PLAN AS DEEMED NECESSARY.
12. INFORMATION ON TIES PLAN IS FOR EROSION CONTROL ONLY. ALL OTHER INFORMATION IS SUBJECT TO CHANGE.
13. TEMPORARY EROSION PROTECTION IS REQUIRED FOR MANUFACTURED SLOPES PRIOR TO PERMANENT PLANTING.
14. AREAS SHALL BE MAINTAINED IN SUCH A STATE THAT FIRE ACCESS SHALL BE MAINTAINED AT ALL TIMES (INCLUDING ACCESS TO NEIGHBORING PROPERTIES).
15. NO OBSTRUCTION OR DISTURBANCE OF NATURAL DRAINAGE COURSES OR EXISTING STORM DRAIN INLETS SHALL OCCUR DURING THE RAINY SEASON, UNLESS ADEQUATE TEMPORARY/PERMANENT DRAINAGE FACILITIES HAVE BEEN APPROVED AND INSTALLED TO CARRY SURFACE WATER TO THE NEAREST PRACTICAL STREET, STORM DRAIN OR NATURAL WATER COURSE.
16. THE CONTRACTOR SHALL CONDUCT HIS OPERATIONS IN SUCH A MANNER THAT STORM RUNOFF WILL BE CONTAINED WITHIN THE PROJECT OR CHANNELED INTO THE STORM DRAIN SYSTEM WHICH SERVES THE RUNOFF AREA. STORM RUNOFF FROM ONE AREA SHALL NOT BE ALLOWED TO DIVERT TO ANOTHER RUNOFF AREA.
17. CONFORMANCE WITH THE REQUIREMENTS OF THESE PLANS SHALL IN NO WAY RELIEVE THE CONTRACTOR FROM HIS RESPONSIBILITIES TO TIES SITE AND ADJACENT PROPERTIES. TEMPORARY EROSION CONTROL SHALL CONSIST OF, BUT NOT BE LIMITED TO, CONSTRUCTING SUCH FACILITIES AND TAKING SUCH MEASURES AS ARE NECESSARY TO PREVENT, CONTROL AND ABATE WATER, MUD AND EROSION DAMAGE TO PUBLIC AND PRIVATE PROPERTY AS A RESULT OF THE CONSTRUCTION OF THIS PROJECT.
18. SLOPES CONSTRUCTED PRIOR TO OCTOBER 1 SHALL BE TREATED FOR EROSION CONTROL PRIOR TO OCTOBER 15. SLOPES CONSTRUCTED AFTER OCTOBER 1 SHALL BE TREATED FOR EROSION CONTROL AS THE CONSTRUCTION OF SLOPE PROGRESSES IN INCREMENTS OF 25 FEET OR LESS MEASURED VERTICALLY.
19. FILL AREAS WHILE BEING BROUGHT UP TO GRADE AND DURING PERIODS OF COMPLETION PRIOR TO FINAL GRADE, SHALL BE PROTECTED BY VARIOUS MEASURES TO ELIMINATE EROSION AND THE SILTATION OF DOWNSTREAM FACILITIES AND ADJACENT AREAS. THESE MEASURES MAY INCLUDE, BUT SHALL NOT BE LIMITED TO: TEMPORARY DOWN DRAINS EITHER IN THE FORM OF PIPES OR PAVED DITCHES WITH PROTECTED OUTFALL AREAS; GRADED BERMS AROUND AREAS TO ELIMINATE EROSION OF FILL SLOPES BY SURFACE RUNOFF; CONFINED PONDING AREAS TO DESILT RUNOFF; TEMPORARY CHECK DAMS IN TOE OF SLOPE DITCHES TO DESILT RUNOFF; PROTECTION SUCH AS GRAVEL BAGS AROUND INLETS WHICH HAVE NOT BEEN BROUGHT UP TO GRADE; AND EARTH BERMS AND APPROPRIATE GRADING TO DIRECT DRAINAGE AWAY FROM THE EDGE OF THE TOP OF SLOPES SHALL BE CONSTRUCTED AND MAINTAINED ON THOSE FILL AREAS WHERE EARTH-WORK OPERATIONS ARE NOT IN PROGRESS.
20. TOP OF CUT BROW DITCHES, WHERE REQUIRED ON THE PLANS, SHALL BE CONSTRUCTED PRIOR TO EXCEEDING 12 FEET OF CUT MEASURED VERTICALLY.
21. CLEARING AND GRUBBING SHOULD BE LIMITED TO AREAS THAT WILL RECEIVE IMMEDIATE GRADING. EROSION CONTROL MEASURES WILL BE REQUIRED TO PROTECT AREAS THAT HAVE BEEN CLEARED AND GRUBBED PRIOR TO GRADING OPERATION, AND THAT ARE SUBJECT TO RUNOFF DURING THE PERIOD FROM THE BEGINNING OF THE RAINY SEASON. THESE MEASURES MAY INCLUDE BUT SHALL NOT BE LIMITED TO: GRADED DITCHES; BRUSH BARRIERS AND SILT FENCES. CARE SHALL BE EXERCISED TO PRESERVE VEGETATION BEYOND THE LIMITS OF GRADING.
22. CITY APPROVAL OF PLANS DOES NOT RELIEVE THE DEVELOPER FROM RESPONSIBILITY FOR THE CORRECTION OF ERRORS AND OMISSIONS DISCOVERED DURING CONSTRUCTION. UPON REQUEST, THE REQUIRED PLAN REVISIONS SHALL BE PROMPTLY SUBMITTED TO THE CITY ENGINEER FOR APPROVAL.

WDID #: 563194

CITY OF GARDEN GROVE
ROUGH GRADING PLAN
TRACT NO. 17702, LOT 1
BROOKHURST TRIANGLE PHASE II
EROSION CONTROL PLAN

SHEET
6
OF
8

Material Delivery and Storage WM-1

Description and Purpose
Prevent, reduce, or eliminate the discharge of pollutants from material delivery and storage to the stormwater system or watercourses by minimizing the storage of hazardous materials onsite, storing materials in watertight containers and/or a completely enclosed designated area, installing secondary containment, conducting regular inspections, and training employees and subcontractors.

This best management practice covers only material delivery and storage. For other information on materials, see WM-2, Material Use, or WM-4, Spill Prevention and Control. For information on wastes, see the waste management BMPs in this section.

Suitable Applications
These procedures are suitable for use at all construction sites with delivery and storage of the following materials:

- Soil stabilizers and binders
- Pesticides and herbicides
- Fertilizers
- Detergents
- Plaster
- Petroleum products such as fuel, oil, and grease

Categories

EC	Erosion Control
SE	Sediment Control
TC	Tracking Control
WE	Wind Erosion Control
NS	Non-Stormwater
MG	Management Control
WM	Waste Management and Materials Pollution Control

Legend:

- Primary Category
- Secondary Category

Targeted Constituents

Sediment	<input checked="" type="checkbox"/>
Nutrients	<input checked="" type="checkbox"/>
Trash	<input checked="" type="checkbox"/>
Metals	<input checked="" type="checkbox"/>
Bacteria	<input checked="" type="checkbox"/>
Oil and Grease	<input checked="" type="checkbox"/>
Organics	<input checked="" type="checkbox"/>

Potential Alternatives
None

CASQA
CALIFORNIA STORMWATER
PRACTICE GUIDELINES

November 2009 California Stormwater BMP Handbook Construction www.casqa.org 1 of 5

Material Delivery and Storage WM-1

Categories

EC	Erosion Control
SE	Sediment Control
TC	Tracking Control
WE	Wind Erosion Control
NS	Non-Stormwater
MG	Management Control
WM	Waste Management and Materials Pollution Control

Legend:

- Primary Category
- Secondary Category

Targeted Constituents

Sediment	<input checked="" type="checkbox"/>
Nutrients	<input checked="" type="checkbox"/>
Trash	<input checked="" type="checkbox"/>
Metals	<input checked="" type="checkbox"/>
Bacteria	<input checked="" type="checkbox"/>
Oil and Grease	<input checked="" type="checkbox"/>
Organics	<input checked="" type="checkbox"/>

Implementation
The following steps should be taken to minimize risk:

- Chemicals must be stored in water tight containers with appropriate secondary containment or in a storage shed.
- When a material storage area is located on bare soil, the area should be lined and bermed.
- Use containment pallets or other practical and available solutions, such as storing materials within newly constructed buildings or garages, to meet material storage requirements.
- Stack erodible landscape material on pallets and cover when not in use.
- Contain all fertilizers and other landscape materials when not in use.
- Temporary storage areas should be located away from vehicular traffic.
- Material Safety Data Sheets (MSDS) should be available on-site for all materials stored that have the potential to effect water quality.
- Construction site areas should be designated for material delivery and storage.
- Material delivery and storage areas should be located away from waterways, if possible.
 - Avoid transport near drainage paths or waterways.
 - Surround with earth berms or other appropriate containment BMP. See EC-9, Earth Dikes and Drainage Swales.
 - Place in an area that will be paved.
- Storage of reactive, ignitable, or flammable liquids must comply with the fire codes of your area. Contact the local Fire Marshal to review site materials, quantities, and proposed storage area to determine specific requirements. See the Flammable and Combustible Liquid Code, NFPA30.
- An up to date inventory of materials delivered and stored onsite should be kept.

November 2009 California Stormwater BMP Handbook Construction www.casqa.org 2 of 5

Material Delivery and Storage WM-1

Material Storage Areas and Practices
Liquids, petroleum products, and substances listed in 40 CFR Parts 110, 117, or 302 should be stored in approved containers and drums and should not be overfilled. Containers and drums should be placed in temporary containment facilities for storage.

- A temporary containment facility should provide for a spill containment volume able to contain precipitation from a 25 year storm event, plus the greater of 10% of the aggregate volume of all containers or 100% of the capacity of the largest container within its boundary, whichever is greater.
- A temporary containment facility should be impermeable to the materials stored therein for a minimum contact time of 72 hours.
- A temporary containment facility should be maintained free of accumulated rainwater and spills. In the event of spills or leaks, accumulated rainwater and spills should be collected and placed into drums. These liquids should be handled as a hazardous waste unless testing determines them to be non-hazardous. All collected liquids or non-hazardous liquids should be sent to an approved disposal site.
- Sufficient separation should be provided between stored containers to allow for spill cleanup and emergency response access.
- Incompatible materials, such as chlorine and ammonia, should not be stored in the same temporary containment facility.
- Materials should be covered prior to, and during rain events.
- Materials should be stored in their original containers and the original product labels should be maintained in place in a legible condition. Damaged or otherwise illegible labels should be replaced immediately.

November 2009 California Stormwater BMP Handbook Construction www.casqa.org 3 of 5

Material Delivery and Storage WM-1

Spill Clean-up
Contain and clean up any spill immediately.

- Properly remove and dispose of any hazardous materials or contaminated soil if significant residual materials remain on the ground after construction is complete. See WM-7, Contaminated Soil Management.
- See WM-4, Spill Prevention and Control, for spills of chemicals and/or hazardous materials.
- If spills or leaks of materials occur that are not contained and could discharge to surface waters, non-visible sampling of site discharge may be required. Refer to the General Permit or to your project specific Construction Site Monitoring Plan to determine if and where sampling is required.

Cost
The largest cost of implementation may be in the construction of a materials storage area that is covered and provides secondary containment.

Inspection and Maintenance
BMPs must be inspected in accordance with General Permit requirements for the associated pollutant type and risk level. It is recommended that at a minimum, BMPs be inspected weekly, prior to forecasted rain events, daily during extended rain events, and after the conclusion of rain events.

- Keep storage areas clean and well organized, including a current list of all materials onsite.
- Inspect labels on containers for legibility and accuracy.

November 2009 California Stormwater BMP Handbook Construction www.casqa.org 4 of 5

Material Delivery and Storage WM-1

References
Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995.

Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992.

Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), March 2003.

Stormwater Management for Construction Activities: Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.

November 2009 California Stormwater BMP Handbook Construction www.casqa.org 5 of 5

Concrete Waste Management WM-8

PLAN
NOT TO SCALE
TYPE "BELOW GRADE"
SECTION A-A
NOT TO SCALE

PLAN
NOT TO SCALE
TYPE "ABOVE GRADE"
SECTION B-B
NOT TO SCALE

NOTES
1. ACTUAL LAYOUT DETERMINED IN FIELD.
2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30 FT OF THE TEMPORARY CONCRETE WASHOUT FACILITY.

NOTES
1. ACTUAL LAYOUT DETERMINED IN FIELD.
2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30 FT OF THE TEMPORARY CONCRETE WASHOUT FACILITY.

November 2009 California Stormwater BMP Handbook Construction www.casqa.org 6 of 7

Concrete Waste Management WM-8

PLAN
NOT TO SCALE
TYPE "ABOVE GRADE"
SECTION B-B
NOT TO SCALE

NOTES
1. ACTUAL LAYOUT DETERMINED IN FIELD.
2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30 FT OF THE TEMPORARY CONCRETE WASHOUT FACILITY.

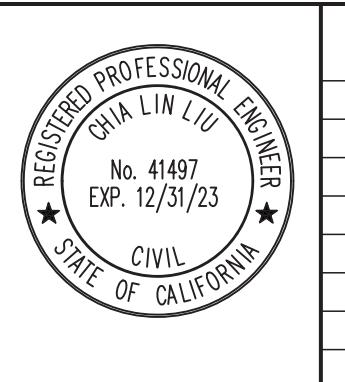
November 2009 California Stormwater BMP Handbook Construction www.casqa.org 7 of 7

BASIS OF BEARINGS:
THE BEARINGS SHOWN HEREON ARE BASED ON THE CENTERLINE OF BROOKHURST STREET
N32°58'38" W PER TRACT NO. 17871, M.B. 941-29-30.

BENCH MARK
CITY B.M. NO. GG-130:
NORTHEAST QUADRANT OF LAMPSON AVE. & BROOKHURST ST., 15' EAST OF B.C.R., 1'
NORTH OF CURB FACE, IN SOUTHEAST CORNER OF A 16' X 4' CATCH BASIN.
ELEVATION=85.727' (NAVD 1988)

OWNER:
KAM SANG COMPANY, INC.

411 E. HUNTINGTON DRIVE, #305
ARCADIA, CA 91006
TEL: (626) 446-2988
FAX: (626) 446-3392
E-MAIL: www.kamsangcompany.com


SOIL ENGINEER:
GEOCON WEST, INC.
GEOTECHNICAL

2807 McGAW AVENUE
IRVINE, CA 92618
TEL: (949) 491-6570
FAX:
EMAIL: OC@GEOCONINC.COM

PREPARED BY:
FOCUS ENGINEERING, INC.

8 CORPORATE PARK, SUITE 300
IRVINE, CA 92606
TEL: (949) 450-0590

E-MAIL: focusengr@sbglobal.net

REVISIONS	
NO.	DATE
	DESCRIPTION

WDID #: 563194

CITY OF GARDEN GROVE		SHEET
ROUGH GRADING PLAN		
TRACT NO. 17702, LOT 1		
BROOKHURST TRIANGLE PHASE II		
BMP'S DETAIL "A"		
G-1558		PRINT: 2023-07-11
8		

Silt Fence

SE-1

Objectives

EC	Erosion Control	<input checked="" type="checkbox"/>
SE	Sediment Control	<input type="checkbox"/>
TR	Tracking Control	<input type="checkbox"/>
WE	Wind Erosion Control	<input type="checkbox"/>
NS	Non-Stormwater Management Control	<input type="checkbox"/>
WM	Waste Management and Materials Pollution Control	<input type="checkbox"/>

Legend:

<input checked="" type="checkbox"/>	Primary Objective
<input type="checkbox"/>	Secondary Objective

Targeted Constituents

Sediment	<input checked="" type="checkbox"/>
Nutrients	<input type="checkbox"/>
Trash	<input type="checkbox"/>
Metals	<input type="checkbox"/>
Bacteria	<input type="checkbox"/>
Oil and Grease	<input type="checkbox"/>
Organics	<input type="checkbox"/>

Potential Alternatives

SE-5 Fiber Rolls
SE-6 Gravel Bag Berm
SE-8 Sandbag Barrier
SE-9 Straw Bale Barrier

Description and Purpose

A silt fence is made of a filter fabric that has been entrenched, attached to supporting poles, and sometimes backed by a plastic or wire mesh for support. The silt fence detains sediment-laden water, promoting sedimentation behind the fence.

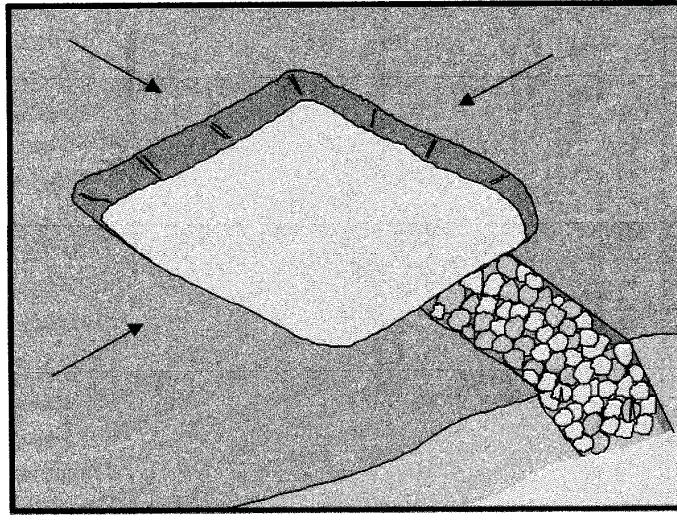
Suitable Applications

Silt fences are suitable for perimeter control, placed below areas where sheet flows discharge from the site. They should also be used as interior controls below disturbed areas where runoff may occur in the form of sheet and rill erosion. Silt fences are generally ineffective in locations where the flow is concentrated and are only applicable for sheet or overland flows. Silt fences are most effective when used in combination with erosion controls. Suitable applications include:

- Along the perimeter of a project.
- Below the toe or down slope of exposed and erodible slopes.
- Along streams and channels.
- Around temporary spoil areas and stockpiles.
- Below other small cleared areas.

Limitations

- Do not use in streams, channels, drain inlets, or anywhere flow is concentrated.


January 2003

California Stormwater BMP Handbook
Construction
www.cabmphandbooks.com

1 of 8

Sediment Trap

SE-3

Objectives

EC	Erosion Control
SE	Sediment Control <input checked="" type="checkbox"/>
TR	Tracking Control
WE	Wind Erosion Control
NS	Non-Stormwater Management Control
WM	Waste Management and Materials Pollution Control

Legend:

<input checked="" type="checkbox"/>	Primary Objective
<input type="checkbox"/>	Secondary Objective

Targeted Constituents

Sediment	<input checked="" type="checkbox"/>
Nutrients	<input type="checkbox"/>
Trash	<input checked="" type="checkbox"/>
Metals	<input type="checkbox"/>
Bacteria	<input type="checkbox"/>
Oil and Grease	<input type="checkbox"/>
Organics	<input type="checkbox"/>

Potential Alternatives

SE-2 Sediment Basin (for larger areas)
--

Description and Purpose

A sediment trap is a containment area where sediment-laden runoff is temporarily detained under quiescent conditions, allowing sediment to settle out or before the runoff is discharged. Sediment traps are formed by excavating or constructing an earthen embankment across a waterway or low drainage area.

Suitable Applications

Sediment traps should be considered for use:

- At the perimeter of the site at locations where sediment-laden runoff is discharged offsite.
- At multiple locations within the project site where sediment control is needed.
- Around or upslope from storm drain inlet protection measures.
- Sediment traps may be used on construction projects where the drainage area is less than 5 acres. Traps would be placed where sediment-laden stormwater may enter a storm drain or watercourse. SE-2, Sediment Basins, must be used for drainage areas greater than 5 acres.
- As a supplemental control, sediment traps provide additional protection for a water body or for reducing sediment before it enters a drainage system.

January 2003

California Stormwater BMP Handbook

Construction
www.cabmphandbooks.com

1 of 6

Check Dams

SE-4

Objectives

EC	Erosion Control	<input type="checkbox"/>
SE	Sediment Control	<input checked="" type="checkbox"/>
TR	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	

Legend:

Primary Objective
 Secondary Objective

Targeted Constituents

Sediment	<input checked="" type="checkbox"/>
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

SE-5 Fiber Rolls
SE-6 Gravel Bag Berm
SE-8 Sandbag Barrier

Description and Purpose

A check dam is a small barrier constructed of rock, gravel bags, sandbags, fiber rolls, or reusable products, placed across a constructed swale or drainage ditch. Check dams reduce the effective slope of the channel, thereby reducing the velocity of flowing water, allowing sediment to settle and reducing erosion.

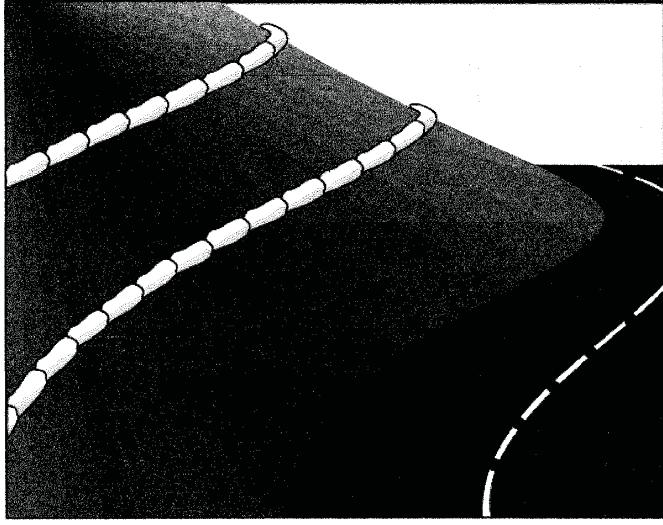
Suitable Applications

Check dams may be appropriate in the following situations:

- To promote sedimentation behind the dam.
- To prevent erosion by reducing the velocity of channel flow in small intermittent channels and temporary swales.
- In small open channels that drain 10 acres or less.
- In steep channels where stormwater runoff velocities exceed 5 ft/s.
- During the establishment of grass linings in drainage ditches or channels.
- In temporary ditches where the short length of service does not warrant establishment of erosion-resistant linings.

Limitations

- Not to be used in live streams or in channels with extended base flows.


January 2003

California Stormwater BMP Handbook
Construction
www.cabmphandbooks.com

1 of 5

Gravel Bag Berm

SE-6

Description and Purpose

A gravel bag berm is a series of gravel-filled bags placed on a level contour to intercept sheet flows. Gravel bags pond sheet flow runoff, allowing sediment to settle out, and release runoff slowly as sheet flows, preventing erosion.

Suitable Applications

Gravel bag berms may be suitable:

- As a linear sediment control measure:
 - Below the toe of slopes and erodible slopes
 - As sediment traps at culvert/pipe outlets
 - Below other small cleared areas
 - Along the perimeter of a site
 - Down slope of exposed soil areas
 - Around temporary stockpiles and spoil areas
 - Parallel to a roadway to keep sediment off paved areas
 - Along streams and channels
- As linear erosion control measure:

Objectives

EC	Erosion Control	<input checked="" type="checkbox"/>
SE	Sediment Control	<input checked="" type="checkbox"/>
TR	Tracking Control	
WE	Wind Erosion Control	
NS	Non-Stormwater Management Control	
WM	Waste Management and Materials Pollution Control	

Legend:

Primary Objective
 Secondary Objective

Targeted Constituents

Sediment	<input checked="" type="checkbox"/>
Nutrients	
Trash	
Metals	
Bacteria	
Oil and Grease	
Organics	

Potential Alternatives

- SE-1 Silt Fence
- SE-5 Fiber Roll
- SE-8 Sandbag Barrier
- SE-9 Straw Bale Barrier

January 2003 California Stormwater BMP Handbook Construction www.cabmphandbooks.com 1 of 4

Stabilized Construction Entrance/Exit TC-1

SECTION B-B
NTS

Crushed aggregate greater than 3" but smaller than 6".

Filter fabric

Original grade

12" Min, unless otherwise specified by a soils engineer

SECTION A-A
NOT TO SCALE

Crushed aggregate greater than 3" but smaller than 6".

Corrugated steel panels

Original grade

Filter fabric

12" Min, unless otherwise specified by a soils engineer

NOTE:
Construct sediment barrier and channelize runoff to sediment trapping device

PLAN
NTS

Existing paved roadway

Match Existing Grade

Ditch

20° R Min

Corrugated steel panels

24' min.

10' min or as required to accommodate anticipated traffic, whichever is greater.

50' min

or four times the circumference of the largest construction vehicle tire, whichever is greater

Sediment trapping device

6 of 6

California Stormwater BMP Handbook
Construction
www.cabmphandbooks.com

January 2003

Concrete Washout Container

QUALITY, DURABILITY, VALUE

Standard Specifications

- 12' Long x 8' wide x 2' high round bottom.
- 6 CU YD holding capacity.
- Heavy gauge floor and sides.
- 3' 1-Piece watertight door hinged on side with seal mounted on door.
- Ratchet style door lock with screw locks.
- Cross members spaced at 16" centers.
- Superslide™ plastic liner for ease of dumping.
- 5" Structural channel main rails with 4"x 6" nose rollers.
- Main rails spaced at 36" ID.
- Standard hook up.

Lift eyes are optional on rampless bins. The two styles are:

- Rampless
- With ramp

The ramp bin includes: spring loaded front platform stationary ramps with fold down ramp extension.

14620 ARMINTA STREET
VAN NUYS, CALIFORNIA 91402
800.635.8335 TOLL FREE
818.787.6312 FAX

CONFAB

www.con-fab.com

BASIS OF BEARINGS:
THE BEARINGS SHOWN HEREON ARE BASED ON THE CENTERLINE OF BROOKHURST STREET
N32°58'38" W PER TRACT NO. 17871, M.B. 941-29-30.

BENCH MARK
CITY B.M. NO. GG-130:
NORTHEAST QUADRANT OF LAMPSON AVE. & BROOKHURST ST., 15' EAST OF B.C.R., 1'
NORTH OF CURB FACE, IN SOUTHEAST CORNER OF A 16' X 4' CATCH BASIN.

ELEVATION=85.727' (NAVD 1988)

OWNER:
KAM SANG COMPANY, INC.

411 E. HUNTINGTON DRIVE, #305
ARCADIA, CA 91006
TEL: (626) 446-2988
FAX: (626) 446-3392
E-MAIL: www.kamsangcompany.com

SOIL ENGINEER:
GEOCON WEST, INC.
GEOTECHNICAL

PREPARED BY:
FOCUS ENGINEERING, INC.

8 CORPORATE PARK, SUITE 300
IRVINE, CA 92606
TEL: (949) 450-0590

E-MAIL: focusengring@sbcglobal.net

WBD // 0001

CITY OF GARDEN GROVE

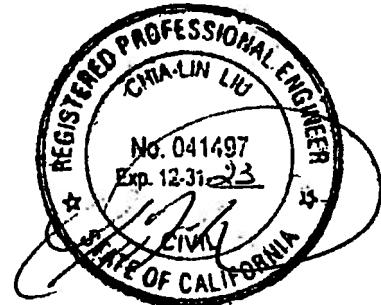
ROUGH GRADING PLAN

TRACT NO. 17702, LOT 1

BROOKHURST TRIANGLE PHASE II

BMP DETAILS – B

SHEET
8
OF
8


**HYDROLOGY / HYDRAULICS REPORT
FOR
BROOKHURST TRIANGLE PHASE II
LOT 1 OF TRACT NO. 17702
Kam Sang Company, Inc.
CITY OF GARDEN GROVE
COUNTY OF ORANGE**

PREPARED FOR

**Kam Sang Company, Inc.
411 E. Huntington Drive, Suite 305
Arcadia, CA 91006
(626) 446-2988**

PREPARED BY

**Focus Engineering, Inc.
8 Corporate Park, Suite 300
Irvine, CA 92606
(949) 450-0590**

Prepared: October 18, 2022

**1st Rev.
2/28/23
[Handwritten signature]
See comments
inside.**

TABLE OF CONTENTS

1. **Introduction**
2. **Hydrology Analysis**
3. **WQMP analysis**
4. **Hydraulic Analysis**
5. **ACO Stormbrixx system & CDS Hydrodynamic Separator**

1. INTRODUCTION:

Project Description

Tract Map 17702, lot 1 is the 2nd phase continue development project of the multi phases of residential, commercial and mix used project, also know as Garden Grove Triangle, in the City of Garden Grove.

Garden Grove Triangle site is boundary by Brookhurst Street on the east, Garden Grove Boulevard on the south, Brookhurst Way on the west and existing office site on the north. The Garden Grove Triangle contains an approximately of 13.944 acres as shown on Exhibit A, Vicinity Map

Lot 1 and Lot "C" of Tract Map 17702 is located on the middle westerly portion of the Garden Grove Triangle site and has a total of 1.353 acres. A total of 112 residential units with parking spaces will be constructed within the Tract 17702, Lot 1 boundary. Parking stalls, asphalt pavement, concrete curbs, concrete curb & gutter, drainage gutters, concrete sidewalk, underground utilities, and landscape will be installed on the site.

Under the current condition, north and northeast portion of the Garden Grove Triangle Site has been developed under Tract Map 17871 development project. Most of study area within Tract Map 17702 is vacant undeveloped land. Kia auto dealer and some existing commercial businesses are occupied on the southerly portion of the Garden Grove Triangle site.

The study sites are characterized by flat sloping topography from the middle of the site flows east (to Brookhurst Street), west (to Brookhurst Way) and south (on-site) directions. Site elevations range from approximately 82 feet above sea level to approximately 78 feet above sea level as shown on the hydrology map – existing site condition. Overall, the site will be covered by building, AC pavement and landscaped planting area at ultimate condition. It is no offsite flows that enter to the project site or study area.

Under the post development condition, new storm drainpipes, grated inlets and catch basins will be installed within the project site in order to carry the 100-year on-site storm runoff generates from the project site.

Underground detention / infiltration ACO Stormbrixx system will be installed within the project site. The purposes of the ACO Stormbrixx system are:

- Service as an underground retention basin to maintain the existing 100-year storm runoff from the site, under the post-development condition, which will be either equal or less than the pre-development condition.
- Service as structural infiltration Best Management Practices (BMP) per Water Quality Management Plan (WQMP).

All on-site storm runoff will drain into the on-site underground ACO Stormbrixx system. An overflow pipe, also known as regular release storm drainpipe for 100-year storm event, will be installed in between the ACO Stormbrixx device and the outlet storm drainpipe.

Storm runoff collected from the site flows into a proposed CDS unit (model CDS 5653-10) for treatment prior to discharge into the above proposed Underground detention / infiltration system.

2. HYDROLOGY ANALYSIS:

Hydrology maps showing the drainage patterns in the existing and ultimate conditions are presented in Exhibit H & I. Hydrologic computations were performed to determine the 100-year storm peak discharge. The procedure followed the Orange County Hydrology Manual. The variables taken into consideration in the computation include rainfall, soil type, and land use conditions characteristic of flow conveyance and time of concentration.

According to the Orange County Hydrology Manual, the Rational Method equation is being used to determine the 100-year storm runoff. The time of concentration for an initial subarea is estimated from the nomograph.

The soil map provided by the Manual indicates a type 'B' soil for the project site area as shown on Exhibit B.

The non-mountainous area precipitation intensity curves are used for the analysis of drainage areas below 2,000 feet in elevation, as shown on Exhibit C.

The hydrologic calculations are performed using the Rational Method indicated in the County Hydrology Manual. As per the approved hydrology analysis, the majority site storm runoff from the project site will be collected by inlets and storm drainpipes through the site. ~~All storm runoff from the site, includes Lot 1 (current project) and Lots 2, 3 and B (future development) of Tract Map 17702 discharges into an existing storm drainpipe (63" RCP) which is located within the easterly portion of the Brookhurst Street as shown on the site improvement plans.~~

Under the development condition, underground piping system intercepts all roof drain storm runoff and discharges into the proposed storm drain system. It includes grate inlets, pipes, CDS treatment unit, ACO underground storage devices, catch basin and outlet storm drain RCP pipe to the existing 62" storm drain main within Brookhurst Street.

The main storm runoff (100-year event) will collect flows through the underground piping system to the storm drain system as shown on the plan. Following treatment through the onsite BMP's. The flows will outlet to the public storm drain system in the adjacent streets.

Following is the sub-drainage areas information for the post development site condition:

(a) Sub-drainage areas "P1" and "P2" – building #2 area (Lot 1 of Tract Map 17702):

The proposed residential building (Building #2) has been divided into two sub-drainage areas, as shown as "P1" and "P2" on the proposed hydrology map. Rain falls on the roof and / or deck area flows into the drainage pipes around the building. Storm runoff flows south and south east direction to the southeast building corner through the drainpipes. A total of 1.35 acres with $Q_{100}=7.50 \text{ cfs} @ T_c=5.0 \text{ min}$ will be anticipated as shown on the hydrology map.

(b) Sub-drainage areas "P3" – Future building #3 area (Lot 2 of Tract Map 17702):

Future residential building (Building #3) has been planned to be constructed within the Lot 2. Storm runoff shall be collected by proposed yard drainpipe around the future building and flows easterly direction. It joins the storm drain system from building #2 at east side of lot 2, than flows easterly to the proposed CDS treatment device prior to discharge into the ACO stormbrixx device. A total of 3.82 acres with $Q100=19.84 \text{ cfs}$ will be anticipated as shown on the hydrology map.

(c) Sub-drainage areas "P4" – Future building #4 area (Lot 3 of Tract Map 17702):


Future residential building (Building #4) has been planned to be constructed within the Lot 3. Storm runoff shall be collected by proposed yard drainpipe around the future building and flows westerly direction and discharges into the proposed CDS treatment device prior to discharge into the ACO stormbrixx device.

(d) Sub-drainage areas "P5" – Future Open Space Park area (Lot B of Tract Map 17702):

Future City's park / Open space has been planned and reserved within the Lot B. Proposed landscape and yard drain system will be installed within the Lot B. All storm runoff will flows into the proposed CDS treatment device prior to discharge into the ACO stormbrixx device.

A total of 5.65 acres site with 28.31 cfs storm runoff will be carried by a new 18" storm drain pipeline from the ACO Stormbrixx unit to a new catch basin at the southeast portion of the project site. All drainage runoff from the areas "P1" to "P5" will be carried by a new 24" RCP and discharge into the existing 63" RCP storm drain pipe within the east side of Brookhurst Street.

Based upon this study, the total storm runoff from the site at 100-year storm event, is 28.31 cfs due to the site development VS 30.01 cfs at pre-development condition, therefore, there is no impact or to a level of insignificant to the existing storm drain system due to this development is expected.

VICINITY MAP
TG: 798-D6 NTS

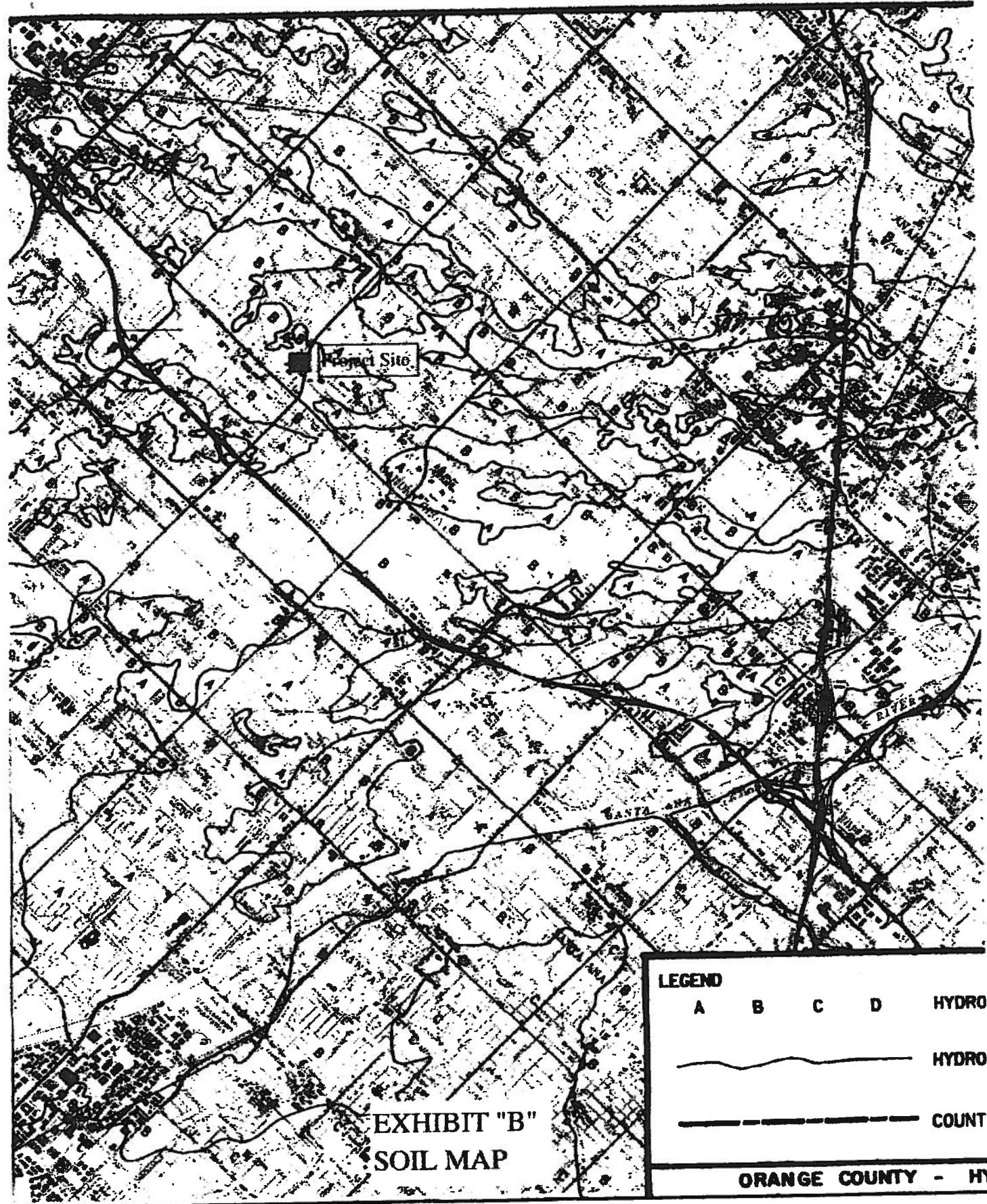
3. WQMP ANALYSIS:

Based upon the Water Quality Management Plan (WQMP), a total of 0.311 cfs capture Volume (Qdcv) of the proposed area is required. A CDS hydrodynamic Separator system, model CDS 4040 which has a treatment flow capacity of 8.4 cfs for trash / debris and 4.1 cfs for 78 microns, will be used for the project.

Following is the comparison chart of new Katchall system and previous approved planter Boxes system for the project.

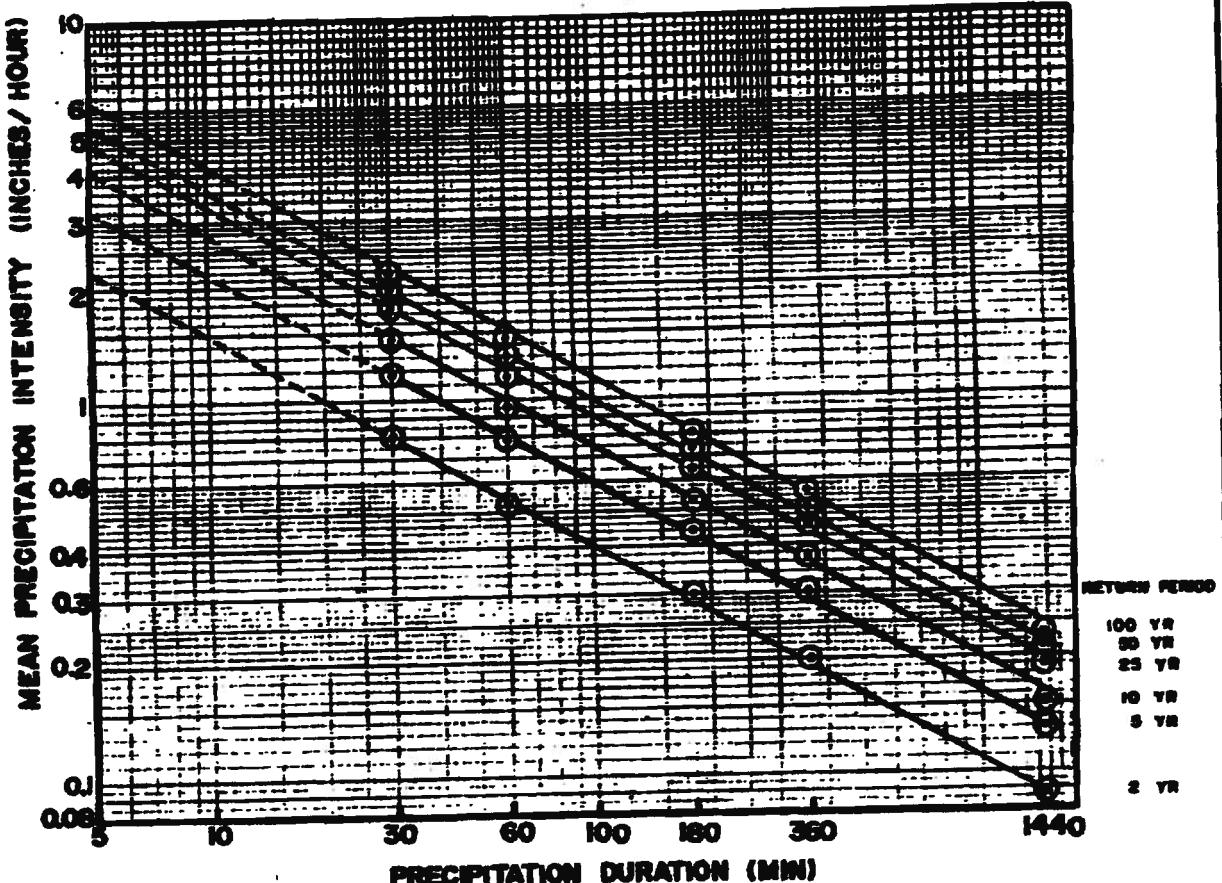
Description	New proposed Katchall underground system
Function - filtration	<p>Storm runoff from roof drain and landscape area flows to the underground piping system around the building and drain to the CDS unit and ACO Stormbrixx underground system prior to release to the storm drain system.</p> <p>CDS hydrodynamic Separator system, model CDS 4040 has a treatment flow capacity of 8.4 cfs for trash / debris and 4.1 cfs for 78 microns, will be used for the project.</p> <p>(Filter flow capacity is 4.1 cfs > 0.311 cfs demand)</p>

TRACT MAP 17701 - LOT 1 - BUILDING NO.2			
WQMP - BMP DCV CALCULATION SHEET			
1	Drainage Area (A)	56323	SF
		1.293	AC
2	Impervious area	49479	SF
3	LS area	6844	SF
4	% of Impervious area	87.8%	
5	% of pervious area	12.2%	
6	Design Storm Depth (D)	0.77	inches
7	Time of Concentration (TC)	5	Min
8	Rainfall Intensity (I)	0.265	in/hr
9	Runoff Coefficient (C)	0.9	
10	Design DCV (Demand)	3253	CF
11	Design QDCV (Demand)	0.311	CFS


BMP APPEARS TO BE
SIZED FOR BLDG. 2 ONLY.

4. HYDRAULIC ANALYSIS:

CivilCadd / CivilDesign software has been used to verify the water surface and energy grade line for all underground piping system and inlets.


According to the attached hydraulic analysis, the proposed storm drain system has an adequate capacity to carry the ultimate storm runoff for the site. All proposed water surface elevations and energy grade elevation will be below the top of inlet grate elevation.

HYDROLOGY STUDY

Regression Equations: $I(t) = at^b$
 (I = Intensity in inches/hour, t = duration in minutes)

Return Frequency (years)	a	b
2	5.702	-0.574
5	7.870	-0.562
10	10.209	-0.573
25	11.995	-0.566
50	13.521	-0.566
100	15.560	-0.573

ORANGE COUNTY
HYDROLOGY MANUAL

MEAN PRECIPITATION
INTENSITIES FOR
NONMOUNTAINOUS AREAS

<u>ACTUAL IMPERVIOUS COVER</u>		
Land Use (1)	Range-Percent	Recommended Value For Average Conditions-Percent (2)
Natural or Agriculture	0 - 0	0
Public Park	10 - 25	15
School	30 - 50	40
Single Family Residential (3)		
2.5 acre lots	5 - 15	10
1 acre lots	10 - 25	20
2 dwellings/acre	20 - 40	30
3-4 dwellings/acre	30 - 50	40
5-7 dwellings/acre	35 - 55	50
8-10 dwellings/acre	50 - 70	60
More than 10 dwellings/acre	65 - 90	80
Multiple Family Residential		
Condominiums	45 - 70	65
Apartments	65 - 90	80
Mobile Home Park	60 - 85	75
Commercial, Downtown Business or Industrial	30 - 100	90

Notes:

1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions.
2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area shall always be made, and a review of aerial photos, where available, may assist in estimating the percentage of impervious cover in developed areas.
3. For typical equestrian subdivisions increase impervious area 5 percent over the values recommended in the table above.

**ORANGE COUNTY
HYDROLOGY MANUAL**

**ACTUAL IMPERVIOUS COVER
FOR
DEVELOPED AREAS**

Figure C-4

C.6.4. Estimation of Maximum Loss Rates for Pervious Areas, F_p

Table C.2 lists the maximum loss rates (inch/hour); F_p , for pervious area as a function of soil group.

TABLE C.2.
MAXIMUM EFFECTIVE PERVERSUS AREA LOSS RATES (inch/hour), F_p

<u>SOIL GROUP:</u>	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
F_p :	0.40	0.30	0.25	0.20

Table C.2 reflects the model calibration assuming an F_p of 0.30 in/hr. for all the considered catchments and storm return frequencies. This mean value of F_p of 0.30 in/hr. was assigned to Hydrologic Soil Group B due to the actual average soil conditions in the reconstitution study areas. The F_p values for Hydrologic Soil Groups A, C, and D, were assigned to account for the different soil types that may be found in Orange County.

C.6.5. Estimation of Catchment Maximum Loss Rates, F_m

The maximum loss rate selected from Table C.2 applies to the pervious area fraction of the watershed. The loss rate assumed for an impervious surface is 0.0 inch/hour. The maximum loss rate, F_m , for a catchment is therefore given by

$$F_m = a_p F_p \quad (C.7)$$

where a_p is the pervious area fraction and F_p is the maximum loss rate for the pervious area (Section C.6.4).

Should a catchment contain several F_m values, the composite F_m value is determined as a simple area average of the several F_m values.

00-2 PRE-DEVELOPMENT CONDITION AREA B - BROOKURST WAY											
A	A-Sub	T ₀	T ₀ (T ₀ + 4))	P ₀ (T ₀ + 4))	A ₀	A ₀ (T ₀ + 4))	A ₁	A ₁ (T ₀ + 4))	T ₁ (T ₀ + 4))	T ₁ (T ₀ + 4))	Q (T ₀ + 4))
A	2.00	2.00	2.00	0.00	0.00	0.00	1.00	0.50	0.50	0.50	0.00
A-Sub	-	-	-	0.00	0.00	0.00	1.00	0.50	0.50	0.50	0.00
T ₀	2.000	2.000	2.000	0.000	0.000	0.000	1.000	0.500	0.500	0.500	0.000
T ₀ (T ₀ + 4))	2.000	2.000	2.000	0.000	0.000	0.000	1.000	0.500	0.500	0.500	0.000
P ₀ (T ₀ + 4))	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A ₀	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A ₀ (T ₀ + 4))	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A ₁	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A ₁ (T ₀ + 4))	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T ₁ (T ₀ + 4))	2.000	2.000	2.000	0.000	0.000	0.000	1.000	0.500	0.500	0.500	0.000
Q (T ₀ + 4))	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Base	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Upper Boundary	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Upper Layer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
High Layer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Low Layer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total area	10	10	10	10	10	10	10	10	10	10	10

NOTE:
The right side of the table gives the total area to be treated in 10' x 10' squares. See Figure C-4.

201 LINE DIVISION CONVENTION AREAS - SOUTH TOWARD DIRECTION

603 PRE-DEVELOPMENT CONDITION AREA C-BROOKVINE STREET

03-2 Line A - Building 82-877E-ACC-OUTLET											
A	A ₁	T ₀	T ₀ (T ₀ , T ₁)	T ₀ (T ₀ , T ₁) (T ₀ , C-4)	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	A ₈
0	100	200	300	400	500	600	700	800	900	1000	
P1	0.57	0.579	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
P2	0.48	1.359	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
P3	0.47	2.359	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
P4	1.00	0.379	0.44	0.49	0.50	0.50	0.50	0.50	0.50	0.50	0.50
P5	0.40	0.369	0.44	0.49	0.50	0.50	0.50	0.50	0.50	0.50	0.50

NOTE:
a) Indicate the value of individual gases in mole mole % at ambient temp & pressure.

b) 0-4

HYDRAULIC STUDY

TRACT MAP 17702 - LOT 1
BROOKHURST TRIANGLE PHASE II - BUILDING NO 2

OFFSITE STORM DRAIN

	Invert	Depth	Water	Q	Vel	Critical	Flow	Top	Height	Base	Wt	No Wth	
Station	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd.El.	Elev	Width	Dia.-FT	or I.D.	ZL	Prs/PIP
L/Elem	Ch Slope												
1003.720	67.150	1.542	68.692	28.31	10.89	1.84	70.53	.00	1.83	1.68	2.000	.000	1 .0
80.540	.0205	-	-	-	-	-	-	-	-	-	-	-	-
1084.260	68.805	1.550	70.355	28.31	10.83	1.82	72.18	.00	1.83	1.67	2.000	.000	0 .0
68.620	.0205	-	-	-	-	-	-	-	-	-	-	-	-
1152.880	70.215	1.630	71.845	28.31	10.33	1.66	73.50	.00	1.83	1.55	2.000	.000	0 .0
20.335	.0205	-	-	-	-	-	-	-	-	-	-	-	-
1173.215	70.633	1.720	72.353	28.31	9.85	1.51	73.86	.00	1.83	1.39	2.000	.000	0 .0
5.695	.0205	-	-	-	-	-	-	-	-	-	-	-	-
1178.910	70.750	1.834	72.584	28.31	9.38	1.37	73.95	.00	1.83	1.10	2.000	.000	0 .0

NOTE S

1. GLOSSARY
 - I - INVERT ELEVATION
 - C - CRITICAL DEPTH
 - W - WATER SURFACE ELEVATION
 - S - SUPER-ELEVATION
 - H - HEIGHT OF CHANNEL
 - E - ENERGY GRADE LINE
 - X - CURVES CROSSING OVER
 - B - BRIDGE ENTRANCE OR EXIT
 - Y - WALL ENTRANCE OR EXIT
2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

Station	Invert Elev	Depth (FT)	Water Elev	Q (CFS)	Vol (FPS)	Energy Head	Super Critcial	Flow Top	Base Wt	No Wth
L/Elem	Ch Slope					Grd.El.	Elev	Width	Dia.-FT or I.D.	ZL Prs/Pip
1000.000	71.000	1.351	72.351	28.31	12.54	2.44	74.79	.00	1.83	2.000
3.410	.0117	- -	- -	- -	- -	.0291	.10	1.35	2.01	.014
1003.410	71.040	1.332	72.372	28.31	12.74	2.52	74.89	.21	1.83	2.000
7.719	.0125	- -	- -	- -	- -	.0310	.24	1.54	2.07	.00
1011.129	71.136	1.291	72.427	28.31	13.20	2.71	75.13	.23	1.83	2.000
9.951	.0125	- -	- -	- -	- -	.0344	.34	1.52	2.20	.014
1021.080	71.260	1.239	72.499	28.31	13.84	2.98	75.48	.00	1.83	2.000
1021.693	71.319	1.247	72.566	28.31	13.74	2.93	75.50	.00	1.94	2.000
3.469	.0957	- -	- -	- -	- -	.0362	.02	1.24	2.38	.92
1025.162	71.651	1.299	72.950	28.31	13.10	2.67	75.62	.00	1.83	2.000
2.839	.0957	- -	- -	- -	- -	.0338	.12	1.25	2.35	.92
1028.001	71.922	1.355	73.277	28.31	12.49	2.42	75.70	.00	1.83	1.87
2.326	.0957	- -	- -	- -	- -	.0267	.06	1.36	2.00	.014
1030.326	72.145	1.415	73.560	28.31	11.91	2.20	75.76	.00	1.83	2.000
1.898	.0957	- -	- -	- -	- -	.0239	.05	1.42	1.84	.92
1032.225	72.326	1.479	73.806	28.31	11.36	2.00	75.81	.00	1.83	1.76
1.496	.0957	- -	- -	- -	- -	.0214	.03	1.48	1.68	.92

TRACT 17702 - LOT 1
BROOKHURST TRIANGLE PHASE II - BUILDING NO. 2

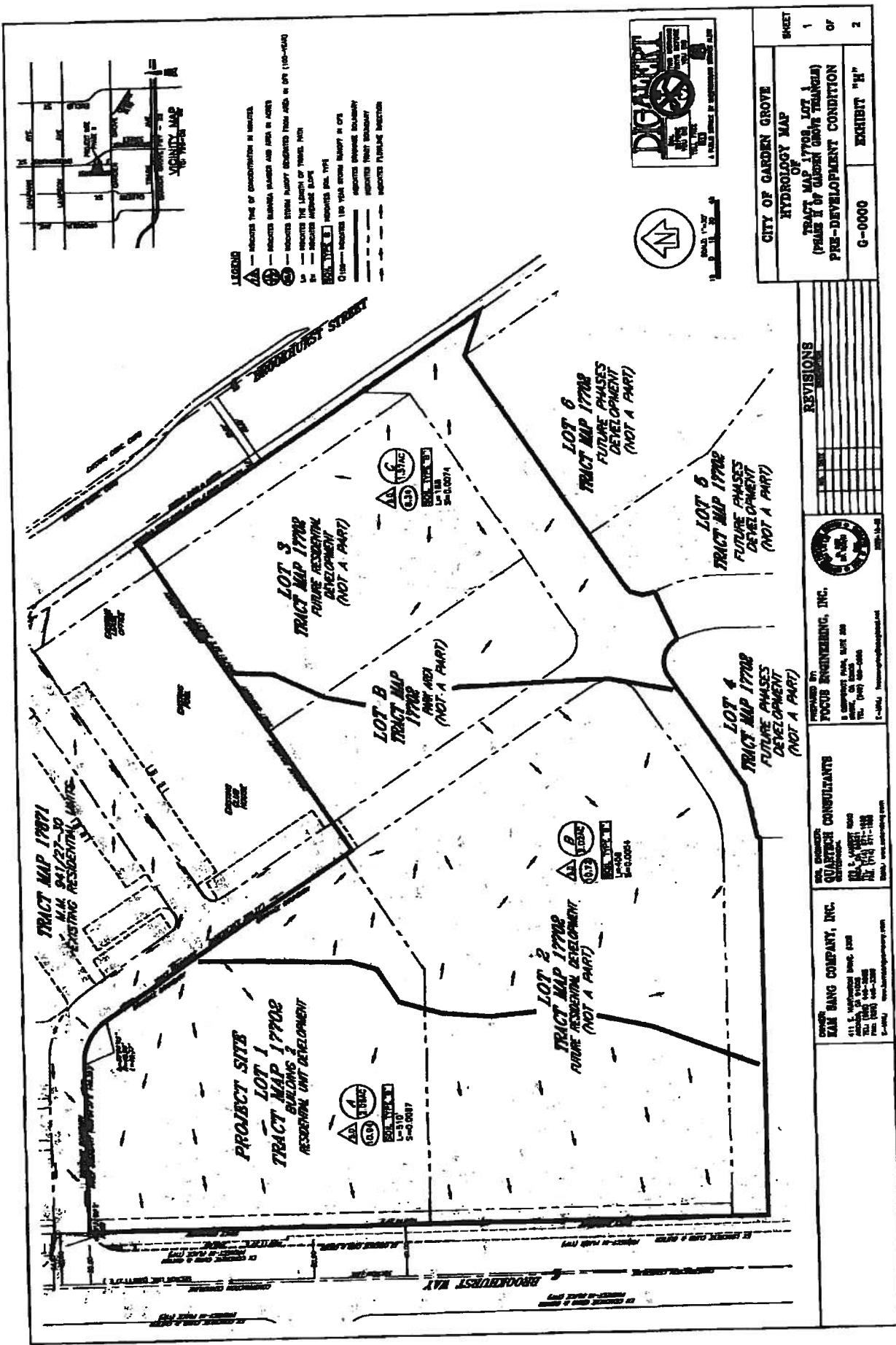
LINE A - CB TO ACO STORMBRICK

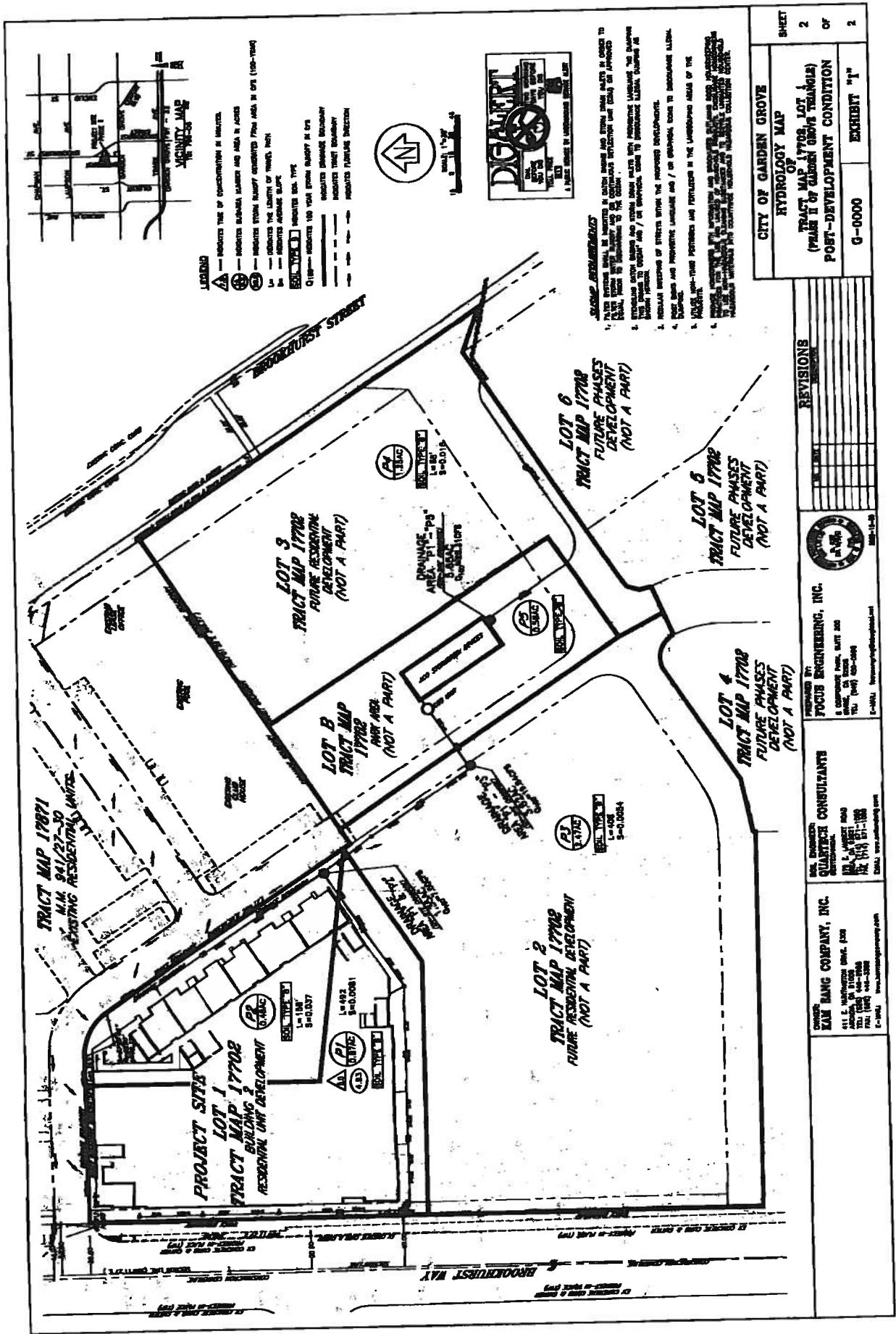
Station	Elev	Invert	Depth (FT)	Water Elev	Q (CFS)	Vol (FPS)	Super Head	Critical Head	Vel (FPS)	Elev	Grd.El.	Width	Dia.-FT or I.D.	Dia.-In.	Base Wt	No Wth	Prs/Pip	ZL	Prs/Pip	X-Fall	Type Ch	
L/Elem	Ch Slope																					
1.120	.0957																					
1034.840	72.577	1.630	1.550	74.020	28.31	10.83	1.82	75.84	.00	1.83	1.67	2.000	.000	.00	.00	.00	.00	.00	.00	.00	.0	
1035.615	.0957	72.651	1.720	74.371	28.31	10.33	1.66	75.86	.00	1.83	1.55	2.000	.000	.00	.00	.00	.00	.00	.00	.00	.0	
1035.920	.0033	72.680	1.834	74.514	28.31	9.38	1.37	75.88	.00	1.83	1.39	2.000	.000	.00	.00	.00	.00	.00	.00	.00	.0	
1040.468	.0033	72.695	2.000	74.695	28.31	9.01	1.26	75.96	.02	1.83	1.10	2.000	.000	.00	.00	.00	.00	.00	.00	.00	.0	
1171.260	.0123	73.120	4.198	77.318	28.31	9.01	1.26	78.58	.00	1.83	.00	2.000	.014	.014	.00	.00	.00	.00	.00	.00	.0	
1242.580	.0123	74.000	4.614	78.614	28.31	9.01	1.26	79.87	.00	1.83	.00	2.000	.000	.000	.00	.00	.00	.00	.00	.00	.0	

N O T E S

1. GLOSSARY

- I - INVERT ELEVATION
- C - CRITICAL DEPTH
- W - WATER SURFACE ELEVATION
- S - SUPER ELEVATION
- H - HEIGHT OF CHANNEL
- E - ENERGY GRADE LINE
- X - CURVES CROSSING OVER
- B - BRIDGE ENTRANCE OR EXIT
- Y - WALL ENTRANCE OR EXIT
- 2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

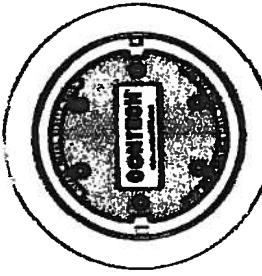

Station	Invert	Depth	Water	Q	Vel	Energy	Super Elevation	Critical Depth	Flow Width	Top Dia.	Base Dia.	Wt	No Wt
	Elev	(FT)	Elev	(CFS)	(FPS)	Head	Grd. El.	Elev	Depth	El. - FT	El. - D.	Prs/Pip	Prs/Pip
L/Elem	Ch Slope												
1000.000	74.250	1.392	75.642	19.84	9.67	1.45	77.09	.00	1.59	1.41	1.750	.000	.00
1.722	.0333	- -	- -	- -	- -	.0189	.03	1.39	1.41	1.12	.014	.00	.00
1001.722	74.307	1.419	75.727	19.84	9.49	1.40	77.13	.00	1.59	1.37	1.750	.000	.00
3.089	.0333	- -	- -	- -	- -	.0177	.05	1.42	1.35	1.12	.014	.00	.00
1004.811	74.410	1.498	75.908	19.84	9.05	1.27	77.18	.00	1.59	1.23	1.750	.000	.00
1.189	.0333	- -	- -	- -	- -	.0164	.02	1.50	1.19	1.12	.014	.00	.00
1006.000	74.450	1.595	76.045	19.84	8.63	1.16	77.20	.06	1.59	1.00	1.750	.000	.00
139.450	.0145	- -	- -	- -	- -	.0109	.66	1.65	1.00	.06	.014	.00	.00
1066.840	75.330	2.253	77.583	7.50	4.24	.28	77.86	.00	1.06	.00	1.500	.000	.00
1206.290	76.030	2.378	78.408	7.50	4.24	.28	78.69	.00	1.06	.00	1.500	.000	.00
JUNCT STR	.0000	- -	- -	- -	- -	.0059	.82	2.25	.00	1.50	.014	.00	.00
JUNCT STR	.0050	- -	- -	- -	- -	.0062	.00	2.38	.00	.014	.00	.00	.00
1206.290	76.030	2.417	78.447	4.83	3.94	.24	78.69	.00	.89	.00	1.250	.000	.00
276.740	.0050	- -	- -	- -	- -	.0065	1.79	2.42	.00	1.25	.014	.00	.00
1483.030	77.420	2.821	80.241	4.83	3.94	.24	80.48	.00	.89	.00	1.250	.000	.00
	- -	- -	- -	- -	- -	- -	- -	- -	- -	- -	- -	- -	- -


NOTES

1. GLOSSARY
 - I - INVERT ELEVATION
 - C - CRITICAL DEPTH
 - W - WATER SURFACE ELEVATION
 - S - SUPER-ELEVATION

H - HEIGHT OF CHANNEL
E - ENERGY GRADE LINE
X - CURVES CROSSING OVER
B - BRIDGE ENTRANCE OR EXIT
Y - WALL ENTRANCE OR EXIT
2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

HYDROLOGY MAPS

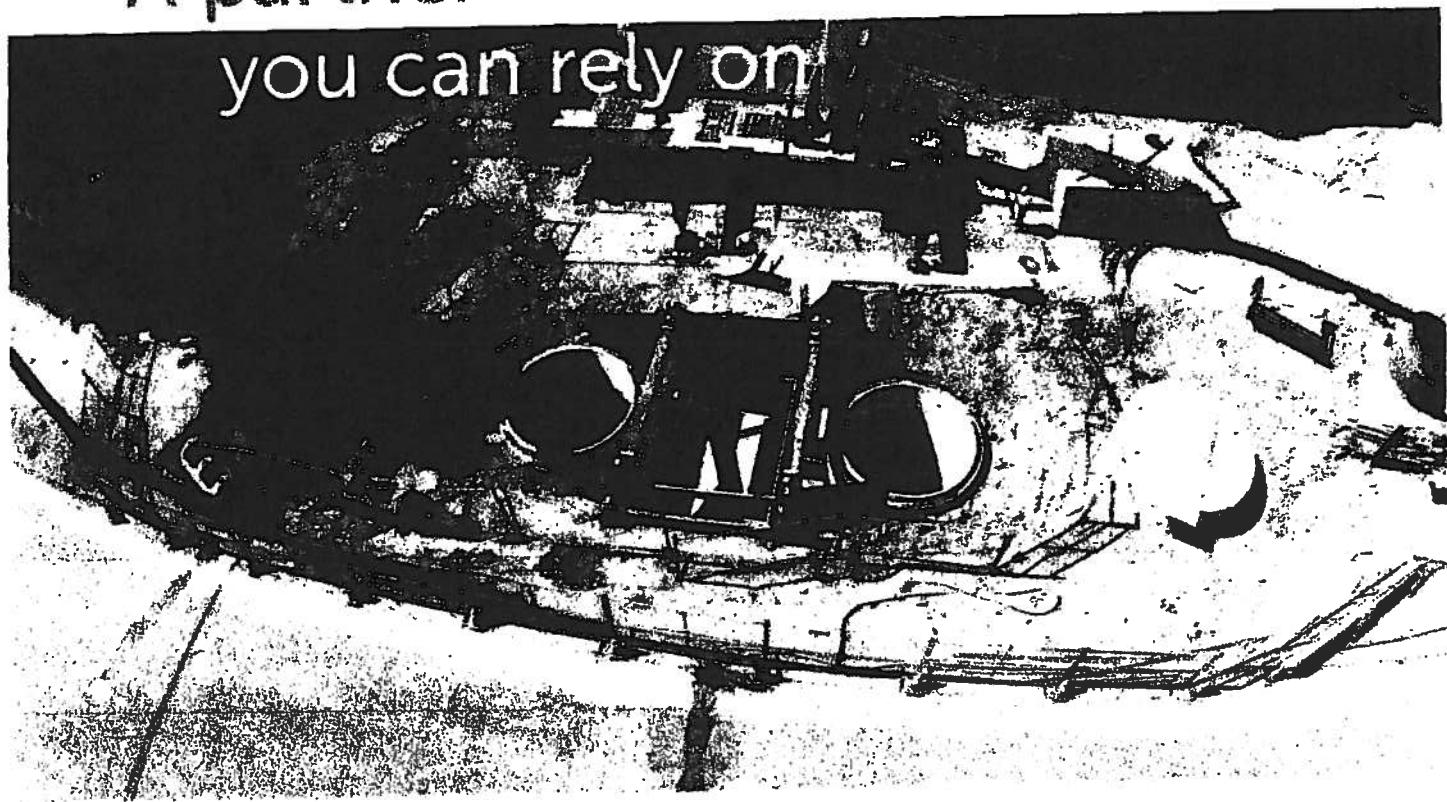


GRAPHIC DESIGN NOTES

THE STANDARD CROSSING AND CONFIRMATION IN REGION 10, ALTHOUGH CONFIRMATION IS AVAILABLE AND LISTED BELOW, REGION 10 CONFIRMATION MAY BE OBTAINED TO BIAS SITE REQUIREMENTS.

SPECIAL CATALOGUE

FRAME AND COVER
(DIAMETER VARIES)
N.T.S.


THE DEPTH AND ANGULARITY OF THE PROFOUND ARE AUTOGRAPHIC DESIGN CONSIDERATIONS AND WILL BE DISCUSSED IN THE PAPER.

CD84046-0
LINE CDS
STANDARD DETAIL

THE
CONNECTION
SOLUTION

प्राचीन भारतीय विज्ञान

A partner you can rely on

BRIDGE CONSTRUCTION

From temporary bridge solutions to long-term bridge designs, ConTech Engineered Solutions offers a wide range of bridge products and services. Our team of experienced engineers and technicians can help you design, build, and maintain a bridge that fits your needs.

WATER & WASTE

Our water and waste management solutions include everything from stormwater management to wastewater treatment. We offer a range of products and services to help you manage water and waste effectively.

STRUCTURAL & MECHANICAL

Our structural and mechanical solutions include everything from bridge components to industrial equipment. We offer a range of products and services to help you build and maintain structures and equipment.

THE CONTECH WAY

ConTech Engineered Solutions provides innovative, cost-effective site solutions to engineers, contractors, and developers on projects across North America. Our portfolio includes bridges, drainage, erosion control, retaining wall, sanitary sewer and stormwater management products.

TAKE THE NEXT STEP

For more information:

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, CONSTRUCTIONS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT www.conteches.com/cos) FOR MORE INFORMATION.

© 2018 CONTECH ENGINEERED SOLUTIONS, LLC. SOURCE CATALOG

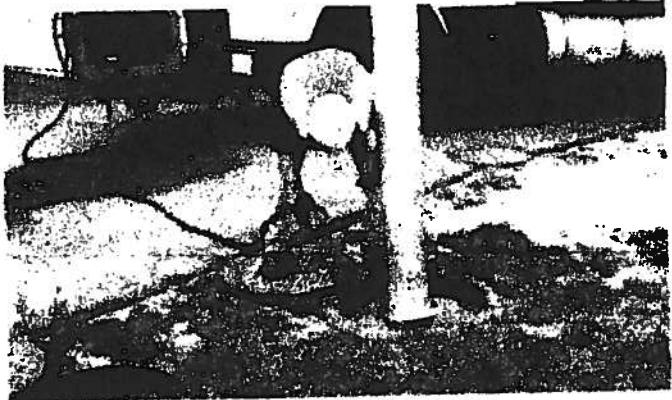
CONTECH
ENGINEERED SOLUTIONS

Get social with us:
800-338-8122 | www.conteches.com

© 2018 CONTECH ENGINEERED SOLUTIONS, LLC. SOURCE CATALOG

CDS® Maintenance

Systems vary in their maintenance needs, and the selection of a cost-effective and easy-to-access treatment system can mean a huge difference in maintenance expenses for years to come.


A CDS unit is designed to minimize maintenance and make it as easy and inexpensive as possible to keep our systems working properly.

INSPECTION

Inspection is the key to effective maintenance. Pollutant deposition and transport may vary from year to year and site to site. Semi-annual inspections will help ensure that the system is cleaned out at the appropriate time. Inspections should be performed more frequently where site conditions may cause rapid accumulation of pollutants.

RECOMMENDATIONS FOR CDS MAINTENANCE

The recommended cleanout of solids within the CDS unit's sump should occur at 75% of the sump capacity. Access to the CDS unit is typically achieved through two manhole access covers – one allows inspection and cleanout of the separation chamber and sump, and another allows inspection and cleanout of sediment captured and retained behind the screen. A vacuum truck is recommended for cleanout of the CDS unit and can be easily accomplished in less than 30 minutes for most installations.

Most CDS® units can easily be cleaned within thirty minutes.

HDS Product Design Worksheets

Our in-house team of engineers can support you through the entire permitting process – and the first step is sending us your project information by filling out one of the Project Design Worksheets. We will forward your information to an in-house engineer who will contact you with specific recommendations for your project.

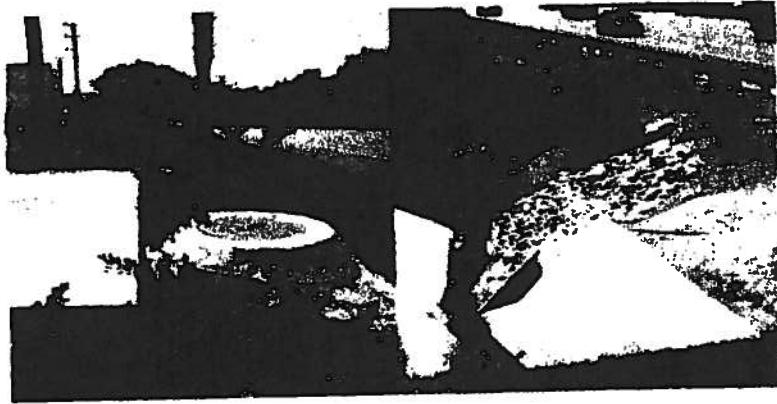
Stormwater Treatment
Project Design Worksheet

Project Design Worksheet - Stormwater Treatment	
Project Information	
Project Name	Project Address
City	State
Zip	Phone
Design Specifications	
Design Type	Design Parameters
Flow Rate	Settling Time
Waste Type	Settling Depth
Waste Volume	Effluent Quality
Comments	

Learn More:

www.GantechHDS.com/ProjectDesign

GANTECH
ENGINEERED SOLUTIONS


CDS® Applications

CDS is commonly used in the following stormwater applications:

- Stormwater quality control – trash, debris, sediment, and hydrocarbon removal
- Urban retrofit and redevelopment
- Inlet and outlet protection
- Pretreatment for filtration, detention/infiltration, bioretention, rainwater harvesting systems, and Low Impact Development designs

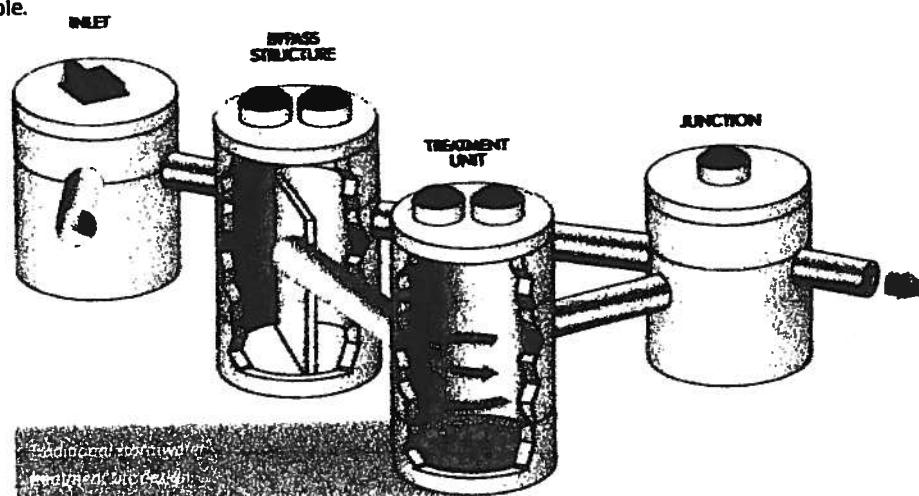
CDS® provides trash control

CDS® pretreats a bioswale

Select CDS® Certifications and Verifications

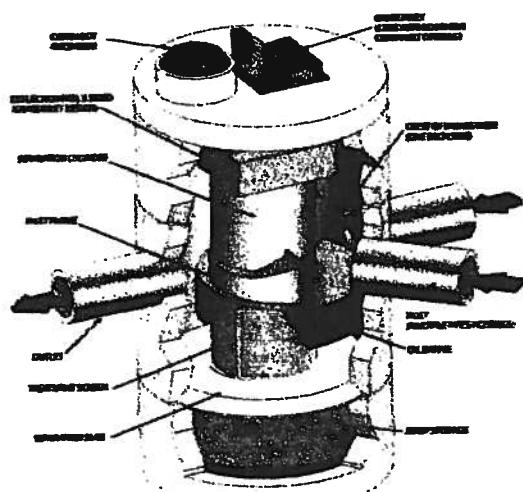
CDS has been verified by some of the most stringent stormwater technology evaluation organizations in North America, including:

- Washington State Department of Ecology (GULD) - Pretreatment
- New Jersey Department of Environmental Protection (NJ DEP)
- Canadian Environmental Technology Verification (ETV)
- California Statewide Trash Amendments Full Capture System Certified*

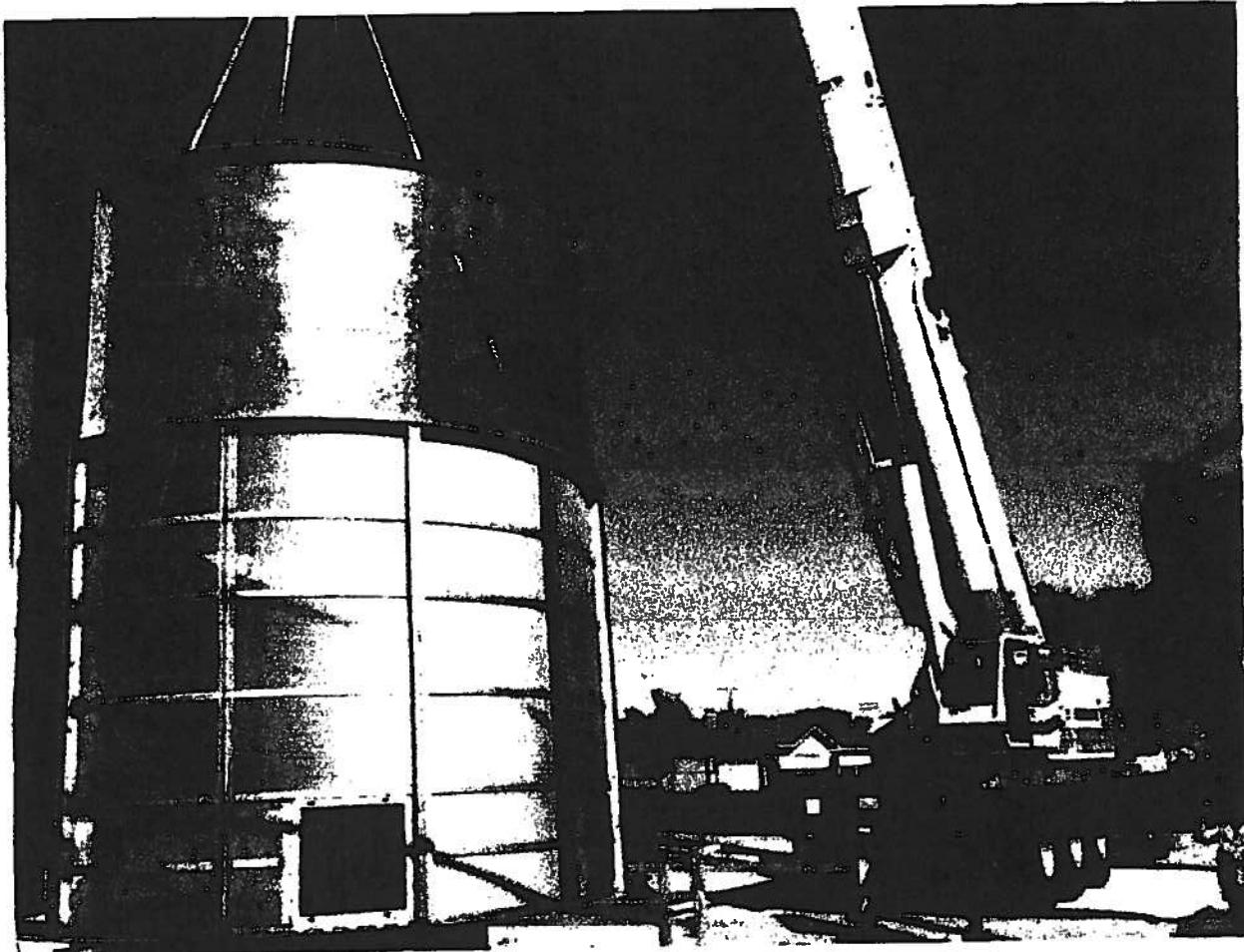

*The CDS System has been certified by the California State Water Resources Control Board as a Full Capture System provided that it is sized to treat the peak flow rate from the region specific 1-year, 1-hour design storm, or the peak flow capacity of the corresponding storm drain, whichever is less.

Save time, space and money with CDS

CDS® Design Configuration


With a standard design, the CDS can be easily integrated into your site's stormwater management system.

The CDS effectively treats stormwater runoff while reducing the number of structures on your site. Inline, offline, grate inlet, and drop inlet configurations available. Internal and external peak bypass options also available.


CDS® Advantages

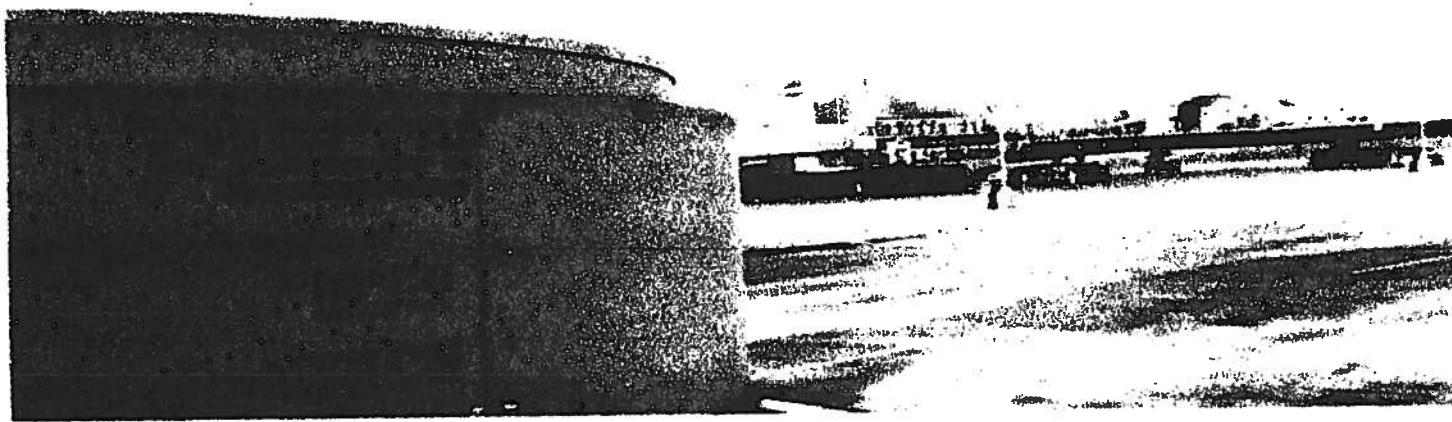
- Grate inlet option available
- Internal bypass weir
- Accepts multiple inlets at a variety of angles
- Advanced hydrodynamic separator
- Captures and retains 100% of floatables and neutrally buoyant debris 4.7 mm or larger
- Indirect screening capability keeps screen from clogging
- Retention of all captured pollutants, even at high flows
- Performance verified by NJCAT, WA Ecology, and ETV Canada

[Learn More](#)
1-800-235-5555

CNTech
ENGINEERED SOLUTIONS

Unique screening technology for stormwater runoff - CDS®

With a unique design, the CDS® is able to capture and remove sediment, oil, grease, organic, paper, debris, trash, debris, suspended and hydrocarbons from stormwater runoff.


Another aspect of the CDS® is its unique ability to remove sediment, oil, grease, organic, paper, debris, trash, debris, suspended and hydrocarbons from stormwater runoff. The process it uses is called "Centrifugal Velocity separation". The design of the screening floor is centered on the removal of sediment, oil, grease, organic, paper, debris, trash, debris, suspended and hydrocarbons from stormwater runoff. The design of the screening floor is centered on the removal of sediment, oil, grease, organic, paper, debris, trash, debris, suspended and hydrocarbons from stormwater runoff. The design of the screening floor is centered on the removal of sediment, oil, grease, organic, paper, debris, trash, debris, suspended and hydrocarbons from stormwater runoff.

CDS® is designed to remove sediment, oil, grease, organic, paper, debris, trash, debris, suspended and hydrocarbons from stormwater runoff. The design of the screening floor is centered on the removal of sediment, oil, grease, organic, paper, debris, trash, debris, suspended and hydrocarbons from stormwater runoff.

© 2000 CDS

CANTECH
ENGINEERING SOLUTIONS

Hydrogen
Generator

Inspections:

Follow all local, state, and federal regulations regarding stormwater BMP inspection requirements.

ACO INC. makes the following recommendations:

- 1. During the first service year a visual inspection should be completed during and after each major rainfall event, in addition to every 6 month period, to monitor and establish what sediment and debris buildup occurs.**

Each ACO StormBrix system is unique to the application and multiple criteria can affect maintenance frequency such as:

- System Design:** pre-treatment/no-pretreatment, inlet protection, stand-alone device.
- Surface Area collecting from:** hardscape, gravel, soil or any other surface.
- Adjacent Area:** soil runoff, gravel, trash.

- 2. Second year; establish an annual inspection frequency based on the information collected during the first year. At a minimum an inspection should be performed at 6 month intervals.**

3. Inspect:

- ACO StormBrix access chambers & inspection ports.**
- Inflow and outflow points.**
- Discharge area.**

4. Identify and Report maintenance required:

- Sediment and debris accumulation.**
- System backing up.**

ACO, Inc.

Electronic Contact:
www.acousa.com
info@acousa.com

West Sales Office
825 W. Beechcroft Street
Casa Grande, AZ 85122
Tel: (520) 421-9995
(888) 480-9552
Fax: (520) 421-9999

Northeast Sales Office
9470 Pleasanton Dr.
Mentor, OH 44060
Tel: (440) 639-7230
(800) 543-4764
Fax: (440) 639-7235

Southeast Sales Office
4211 Pleasant Road
Feb Mil, SC 29708
Tel: (803) 543-4764
Fax: (803) 802-1063

General:

ACO StormBrix is a unique and patented geocellular stormwater management system for detention and infiltration usage.

Its versatile design allows the system to be used in configurations and applications across all construction environments as a standalone solution or as part of an integrated LID (Low Impact Development) or BMP (Best Management Practices). Systems may or may not include pre-treatment to remove sediment and/or contaminants prior to entering the storage area. Those without pre-treatment require greater attention to system functionality and may require additional maintenance.

In order to sustain proper system functionality, ACO offers the following general maintenance guidelines for the StormBrix product.

Prevention Measures:

1. Prior to & During Construction - Siltation prevention of the stormwater system.

- a. Conform to all local, state and federal regulations for sediment and erosion control during construction.**
- b. Install site erosion and sediment BMP's (Best Management Practices) required to prevent siltation of the stormwater system.**
- c. Inspect and maintain erosion and sediment BMP's during construction.**

2. Post Construction - Prior to commissioning the ACO StormBrix system.

- a. Remove and properly dispose of construction erosion and sediment BMP's per all local, state and federal regulations. Care should be taken during removal of the BMP's as not to allow collected sediment or debris into the stormwater system.**
- b. Flush the ACO StormBrix system to remove any sediment or construction debris immediately after the BMP's removal. Follow the maintenance procedure outlined.**

ACO, Inc.

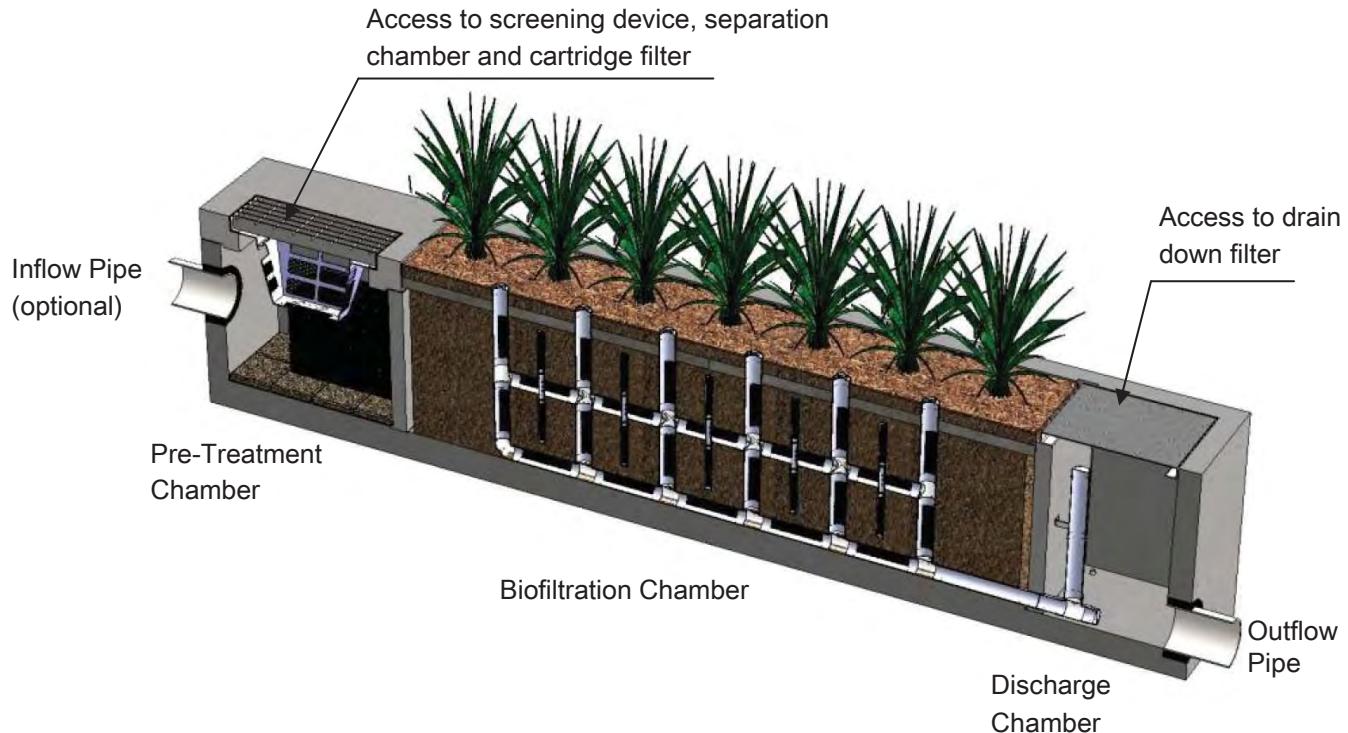
Electronic Contact:
www.acousa.com
info@acousa.com

West Sales Office
825 W. Beachcroft Street
Casa Grande, AZ 85122
Tel: (520) 421-9999
(888) 490-9552
Fax: (520) 421-9999

Northeast Sales Office
9470 Pleasanton Dr.
Mentor, OH 44060
Tel: (440) 639-7235
(800) 543-4764
Fax: (440) 639-7235

Southwest Sales Office
4211 Pleasant Road
Fort Mill, SC 29708
Tel: (803) 543-4764
Fax: (803) 802-1063

APPENDIX C- AMENDMENT 1


BMP MAINTENANCE SUPPLEMENT / O&M PLAN

Maintenance Guidelines for Modular Wetland System - Linear

Maintenance Summary

- Remove Trash from Screening Device – average maintenance interval is 6 to 12 months.
 - *(5 minute average service time).*
- Remove Sediment from Separation Chamber – average maintenance interval is 12 to 24 months.
 - *(10 minute average service time).*
- Replace Cartridge Filter Media – average maintenance interval 12 to 24 months.
 - *(10-15 minute per cartridge average service time).*
- Replace Drain Down Filter Media – average maintenance interval is 12 to 24 months.
 - *(5 minute average service time).*
- Trim Vegetation – average maintenance interval is 6 to 12 months.
 - *(Service time varies).*

System Diagram

Maintenance Procedures

Screening Device

1. Remove grate or manhole cover to gain access to the screening device in the Pre-Treatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

Separation Chamber

1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

Cartridge Filters

1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
2. Enter separation chamber.
3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
4. Remove each of 4 to 8 media cages holding the media in place.
5. Spray down the cartridge filter to remove any accumulated pollutants.
6. Vacuum out old media and accumulated pollutants.
7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

Drain Down Filter

1. Remove hatch or manhole cover over discharge chamber and enter chamber.
2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
3. Exit chamber and replace hatch or manhole cover.

Maintenance Notes

1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
4. Entry into chambers may require confined space training based on state and local regulations.
5. No fertilizer shall be used in the Biofiltration Chamber.
6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.

Maintenance Procedure Illustration

Screening Device

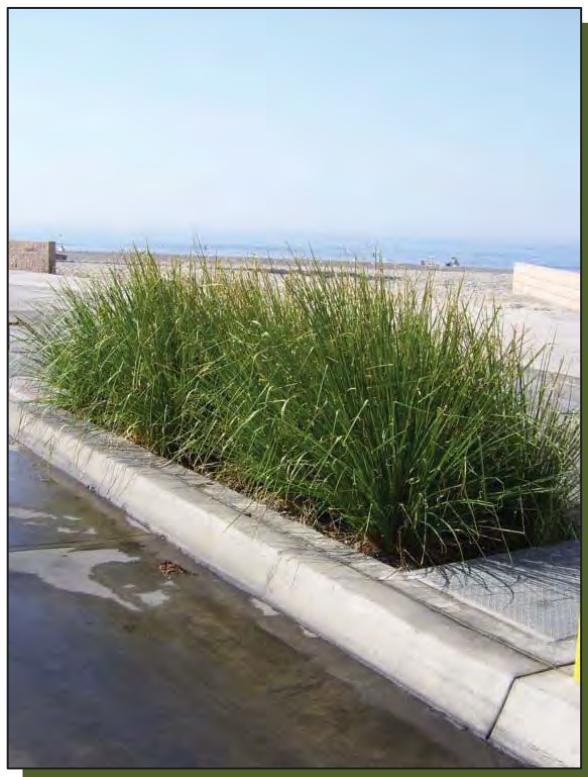
The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.

Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.

Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.


Drain Down Filter

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.

Trim Vegetation

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.

Inspection Form

Modular Wetland System, Inc.

P. 760.433-7640

F. 760-433-3176

E. Info@modularwetlands.com

www.modularwetlands.com

Project Name	For Office Use Only						
Project Address	(city)	(Zip Code)	(Reviewed By)				
Owner / Management Company	(Date) Office personnel to complete section to the left.						
Contact	Phone () -						
Inspector Name	Date	/	Time AM / PM				
Type of Inspection	<input type="checkbox"/> Routine	<input type="checkbox"/> Follow Up	<input type="checkbox"/> Complaint	<input type="checkbox"/> Storm	Storm Event in Last 72-hours?	<input type="checkbox"/> No	<input type="checkbox"/> Yes
Weather Condition	Additional Notes						

Inspection Checklist

Modular Wetland System Type (Curb, Grate or UG Vault): _____ Size (22', 14' or etc.): _____

Structural Integrity:	Yes	No	Comments
Damage to pre-treatment access cover (manhole cover/grate) or cannot be opened using normal lifting pressure?			
Damage to discharge chamber access cover (manhole cover/grate) or cannot be opened using normal lifting pressure?			
Does the MWS unit show signs of structural deterioration (cracks in the wall, damage to frame)?			
Is the inlet/outlet pipe or drain down pipe damaged or otherwise not functioning properly?			
Working Condition:			
Is there evidence of illicit discharge or excessive oil, grease, or other automobile fluids entering and clogging the unit?			
Is there standing water in inappropriate areas after a dry period?			
Is the filter insert (if applicable) at capacity and/or is there an accumulation of debris/trash on the shelf system?			
Does the depth of sediment/trash/debris suggest a blockage of the inflow pipe, bypass or cartridge filter? If yes specify which one in the comments section. Note depth of accumulation in pre-treatment chamber.			Depth: _____
Does the cartridge filter media need replacement in pre-treatment chamber and/or discharge chamber?			Chamber: _____
Any signs of improper functioning in the discharge chamber? Note issues in comments section.			
Other Inspection Items:			
Is there an accumulation of sediment/trash/debris in the wetland media (if applicable)?			
Is it evident that the plants are alive and healthy (if applicable)? Please note Plant Information below.			
Is there a septic or foul odor coming from inside the system?			

Waste:	Yes	No	Recommended Maintenance	Plant Information
Sediment / Silt / Clay			No Cleaning Needed	Damage to Plants
Trash / Bags / Bottles			Schedule Maintenance as Planned	Plant Replacement
Green Waste / Leaves / Foliage			Needs Immediate Maintenance	Plant Trimming

Additional Notes: _____

Maintenance Report

Modular Wetland System, Inc.

P. 760.433-7640

F. 760-433-3176

E. Info@modularwetlands.com

www.modularwetlands.com

Cleaning and Maintenance Report

Modular Wetlands System

Project Name _____	For Office Use Only	
Project Address _____	(city) _____	(Zip Code) _____
Owner / Management Company _____	(Reviewed By) _____	
Contact _____	Phone () -	(Date) _____ Office personnel to complete section to the left.
Inspector Name _____	Date / /	Time AM / PM
Type of Inspection <input type="checkbox"/> Routine <input type="checkbox"/> Follow Up <input type="checkbox"/> Complaint	<input type="checkbox"/> Storm	Storm Event in Last 72-hours? <input type="checkbox"/> No <input type="checkbox"/> Yes
Weather Condition _____	Additional Notes _____	

Site Map #	GPS Coordinates of Insert	Manufacturer / Description / Sizing	Trash Accumulation	Foliage Accumulation	Sediment Accumulation	Total Debris Accumulation	Condition of Media 25/50/75/100 (will be changed @ 75%)	Operational Per Manufacturers' Specifications (If not, why?)
	Lat: _____ Long: _____	MWS Catch Basins						
		MWS Sedimentation Basin						
		Media Filter Condition						
		Plant Condition						
		Drain Down Media Condition						
		Discharge Chamber Condition						
		Drain Down Pipe Condition						
		Inlet and Outlet Pipe Condition						
Comments: _____ _____								

2495 W. BUNGALOW ROAD • MORRIS, IL 60450 • 1-87-STORMTRAP • WWW.STORMTRAP.COM

Maintenance Procedure

The following procedures are for the maintenance of StormTrap as suggested by StormTrap, LLC. All regulations set by governing bodies retain precedence over the subsequent instructions.

1. Do not enter the StormTrap system unless properly trained, equipped, and qualified to enter a confined space as identified by local occupational safety and health regulations.
2. StormTrap recommends an annual inspection. Frequency of cleaning will vary due to site conditions and storage capacity. StormTrap recommends maintenance when the sediment occupies more than one-tenth of the system's volume. Also refer to local municipality regulations for their maintenance requirements and schedules. Inspections should be a part of your standard operating procedure.
3. Maintenance is typically preformed using a vacuum truck. Remove manhole cover at grade and lower vac hose into StormTrap system (or sump pit within system if applicable). Sediment should be flushed towards vac hose to provide for thorough removal. When finished, replace all covers that were removed.

GET THE PRECAST ADVANTAGE!

UrbanPond™

A Stormwater Storage Solution

INSPECTION & MAINTENANCE MANUAL

URBAN POND INSPECTION & MAINTENANCE

Inspection and maintenance of the Urban Pond underground detention, retention, or infiltration system is vital for the performance and life cycle of the stormwater management system. All local, state, and federal permits and regulations must be followed for system compliance. Manway access locations are provided on each system for ease of ingress and egress for routine inspection and maintenance activities. Stormwater regulations require that all BMPs be inspected and maintained to ensure they are operating as designed and providing protection to receiving water bodies. It is recommended that inspections be performed multiple times during the first year to assess the site specific conditions. Inspection after the first significant rainfall event and at quarterly intervals is typical. This is recommended because pollutant loading and pollutant characteristics can vary greatly from site to site. Variables such as nearby soil erosion or construction sites, winter sanding on roads, amount of daily traffic and land use can increase pollutant loading on the system. The first year of inspections can be used to set inspection and maintenance intervals for subsequent years to ensure appropriate maintenance is provided. Without appropriate maintenance a BMP can exceed its storage capacity, become blocked, or damaged, which can negatively affect its continued performance.

Inspection Equipment

Following is a list of equipment to allow for simple and effective inspection of the underground detention, retention, or infiltration system:

- Bio Clean Environmental Inspection and Maintenance Report Form
- Flashlight
- Manhole hook or appropriate tools to access hatches and covers
- Appropriate traffic control signage and procedures
- Measuring pole and/or tape measure
- Protective clothing and eye protection
- Note: Entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections of the system.

Inspection Steps

The key to any successful stormwater BMP maintenance program is routine inspections. The inspection steps required on the Urban Pond underground detention, retention, or infiltration system are quick and easy. As mentioned above, the first year should be seen as the maintenance interval establishment phase. During the first year more frequent inspections should occur in order

to gather loading data and maintenance requirements for that specific site. This information can be used to establish a base for long term inspection and maintenance interval requirements.

The Urban Pond underground detention, retention, or infiltration system can be inspected through visual observation without entry into the system. All necessary pre-inspection steps must be carried out before inspection occurs, especially traffic control and other safety measures to protect the inspector and nearby pedestrians from any dangers associated with an open access hatch or manhole. Once these access covers have been safely opened the inspection process can proceed:

- Prepare the inspection form by writing in the necessary information including project name, location, date & time, unit number and other information (see inspection form).
- Observe the upstream drainage area and look for sources of pollution, sediment, trash and debris.
- Observe the inside of the system through the access manholes. If minimal light is available and vision into the unit is impaired, utilize a flashlight to see inside the system and all of its modules.
- Look for any out of the ordinary obstructions in the inflow and outflow pipes. Check pipes for movement or leakage. Write down any observations on the inspection form.
- Observe any movement of modules.
- Observe concrete for cracks and signs of deterioration.
- In detention and retention systems inspect for any signs of leakage.
- In infiltration systems inspect for any signs of blockage or reasons that the soils are not infiltrating.
- Through observation and/or digital photographs, estimate the amount of floatable debris accumulated in the system. Record this information on the inspection form. Next, utilizing a tape measure or measuring stick, estimate the amount of sediment accumulated in the system. Sediment depth may vary throughout the system, depending on the flow path. Record this depth on the inspection form.
- Finalize inspection report for analysis by the maintenance manager to determine if maintenance is required.

Maintenance Indicators

Based upon observations made during inspection, maintenance of the system may be required based on the following indicators:

- Damaged inlet and outlet pipes.
- Obstructions in the system or its inlet or outlet.
- Excessive accumulation of floatables.
- Excessive accumulation of sediment of more than 6" in depth.
- Damaged joint sealant.

Maintenance Equipment

While maintenance can be done fully by hand it is recommended that a vacuum truck be utilized to minimize time requirements required to maintain the Urban Pond underground detention, retention, or infiltration system:

- Bio Clean Environmental Inspection and Maintenance Report Form
- Flashlight
- Manhole hook or appropriate tools to access hatches and covers
- Appropriate traffic control signage and procedures
- Measuring pole and/or tape measure
- Protective clothing and eye protection
- Vacuum truck
- Trash can
- Pressure washer
- Note: Entering a confined space requires appropriate safety and certification. It is generally not required for routine inspections of the system. Entry into the system will be required if maintenance is required.

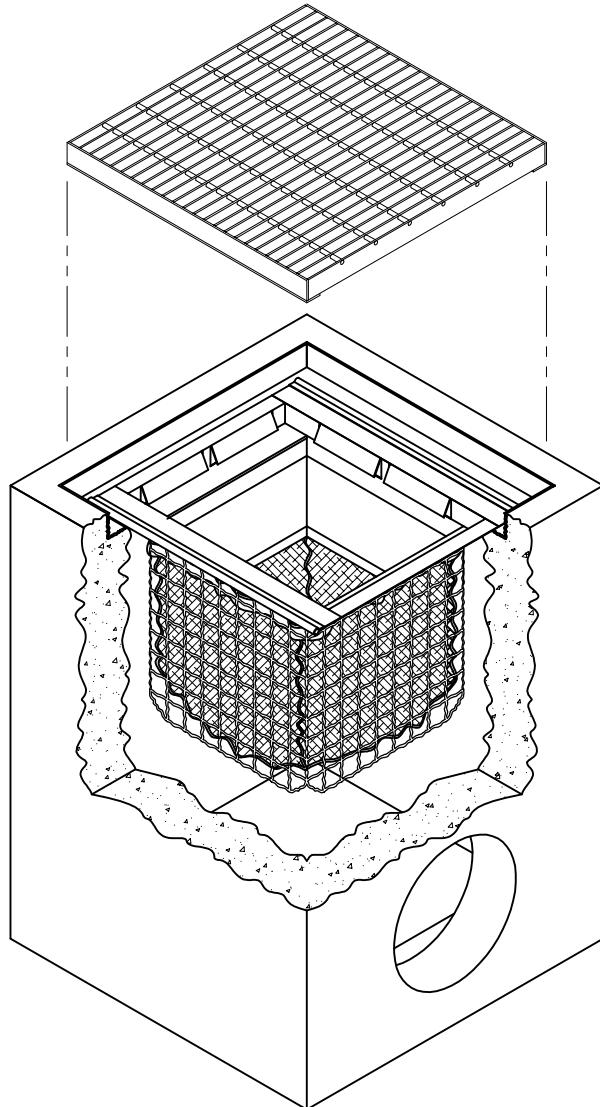
Maintenance Procedures

It is recommended that maintenance occurs at least three days after the most recent rain event to allow for drain down of the system and any upstream detention systems designed to drain down over an extended period of time. Maintaining the system while flows are still entering it will increase the time and complexity required for maintenance. Once all safety measures have been set up cleaning of the system can proceed as follows:

- Using an extension on a boom on the vacuum truck, position the hose over the opened manway and lower into the system. Remove all floating debris, standing water (as needed) and sediment from the system. A power washer can be used to assist if sediments have become hardened and stuck to the walls and columns. Repeat the same procedure at each manway until the system has been fully maintained. Be sure not to pressure wash the infiltration area as it may scour.

If maintenance requires entry into the vault:

- Following rules for confined space entry use a gas meter to detect the presence of any hazardous gases. If hazardous gases are present do not enter the vault. Follow appropriate confined space procedures, such as utilizing venting system, to address the hazard. Once it is determined to be safe, enter utilizing appropriate entry equipment such as a ladder and tripod with harness.

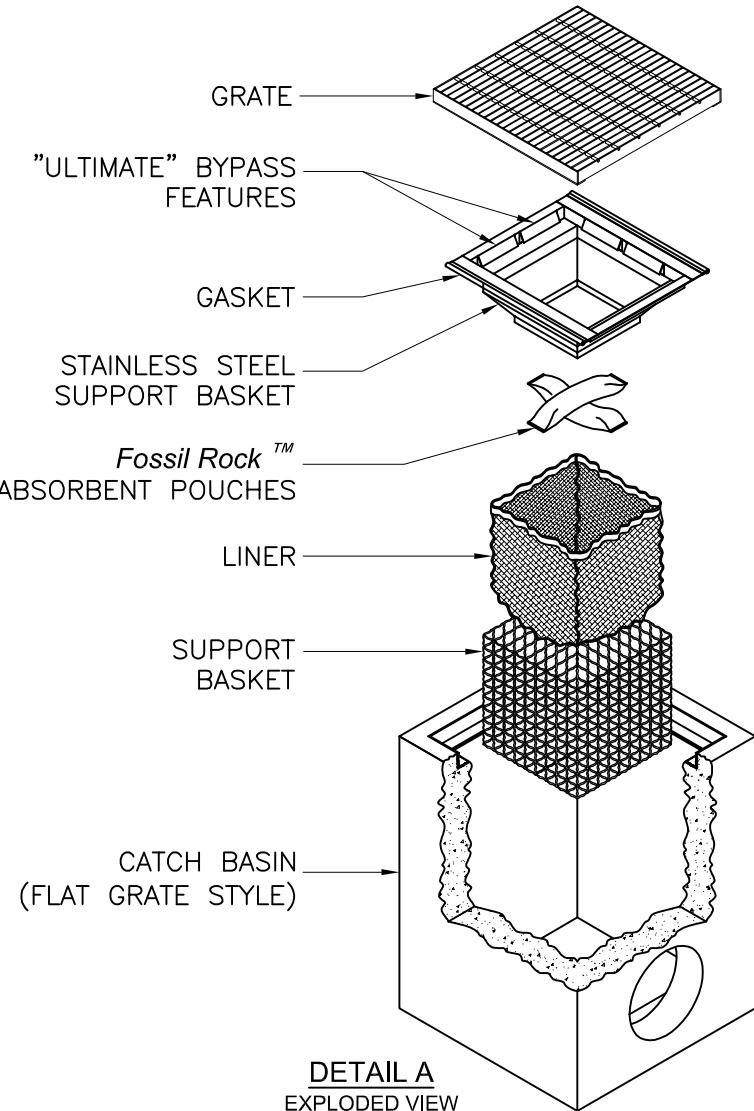

- The last step is to close up and replace all manhole covers and remove all traffic control.
- All removed debris and pollutants shall be disposed of following local and state requirements.

For Maintenance Services please contact Bio Clean at 760-433-7640, or email info@biocleanenvironmental.com.

APPENDIX E -AMENDMENT 1

BMPs Devices Details

FloGard® FILTER
-INSTALLED INTO CATCH BASIN-


U.S. PATENT # 6,00,023 & 6,877,029

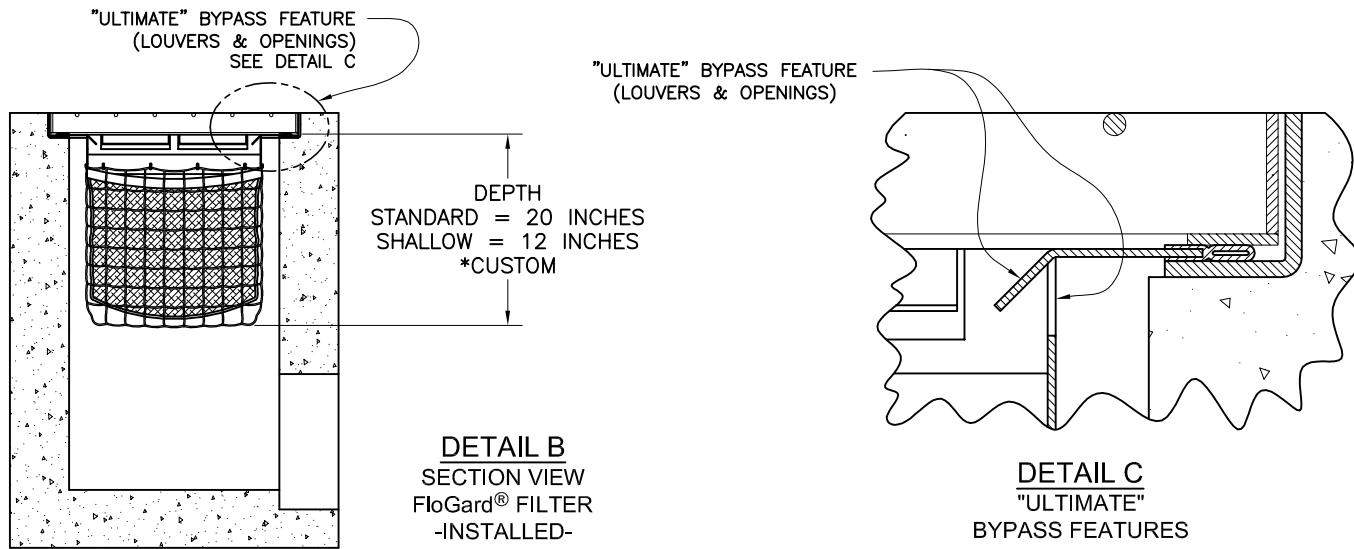
FloGard®

Catch Basin Insert Filter

Grated Inlet Style

NOTES:

1. Filter insert shall have a high flow bypass feature.
2. Filter support frame shall be constructed from stainless steel Type 304.
3. Filter medium shall be *Fossil Rock™*, installed and maintained in accordance with manufacturer specifications.
4. Storage capacity reflects 80% of maximum solids collection prior to impeding filtering bypass.



Oldcastle®
Stormwater Solutions

7921 Southpark Plaza, Suite 200 | Littleton, CO | 80120 | Ph: 800.579.8819 | oldcastlestormwater.com

THIS DOCUMENT IS THE PROPERTY OF OLDCASTLE PRECAST, INC. IT IS SUBMITTED FOR REFERENCE PURPOSES ONLY AND SHALL NOT BE USED IN ANY WAY INJURIOUS TO THE INTERESTS OF SAID COMPANY. COPYRIGHT © 2010 OLDCASTLE PRECAST, INC. ALL RIGHTS RESERVED.

DRAWING NO.	REV	ECO	ECO-0142	DATE	SHEET 1 OF 2
FGP-0001	G		JPR 7/13/16	JPR 11/3/06	

* MANY OTHER STANDARD & CUSTOM SIZES & DEPTHS AVAILABLE UPON REQUEST.

SPECIFIER CHART

MODEL NO.	STANDARD & SHALLOW DEPTH (Data in these columns is the same for both STANDARD & SHALLOW versions)			STANDARD DEPTH -20 Inches-		MODEL NO.	SHALLOW DEPTH -12 Inches-	
	STANDARD DEPTH	INLET ID Inside Dimension (inch x inch)	GRATE OD Outside Dimension (inch x inch)	TOTAL BYPASS CAPACITY (cu. ft. / sec.)	SOLIDS STORAGE CAPACITY (cu. ft.)	FILTERED FLOW (cu. ft. / sec.)	SHALLOW DEPTH	SOLIDS STORAGE CAPACITY (cu. ft.)
FGP-12F	12 X 12	12 X 14	2.8	0.3	0.4	FGP-12F8	.15	.25
FGP-16F	16 X 16	16 X 19	4.7	0.8	0.7	FGP-16F8	.45	.4
FGP-18F	18 X 18	18 X 20	4.7	0.8	0.7	FGP-18F8	.45	.4
FGP-1824F	16 X 22	18 X 24	5.0	1.5	1.2	FGP-1824F8	.85	.7
FGP-1836F	18 X 36	18 X 40	6.9	2.3	1.6	FGP-1836F8	1.3	.9
FGP-2024F	18 X 22	20 X 24	5.9	1.2	1.0	FGP-2024F8	.7	.55
FGP-21F	22 X 22	22 X 24	6.1	2.2	1.5	FGP-21F8	1.25	.85
FGP-24F	24 X 24	24 X 27	6.1	2.2	1.5	FGP-24F8	1.25	.85
FGP-2430F	24 X 30	26 X 30	7.0	2.8	1.8	FGP-2430F8	1.6	1.05
FGP-2436F	24 X 36	24 X 40	8.0	3.4	2.0	FGP-2436F8	1.95	1.15
FGP-2448F	24 X 48	26 X 48	9.3	4.4	2.4	FGP-2448F8	2.5	1.35
FGP-28F	28 X 28	32 X 32	6.3	2.2	1.5	FGP-28F8	1.25	.85
FGP-30F	30 X 30	30 X 34	8.1	3.6	2.0	FGP-30F8	2.05	1.15
FGP-36F	36 X 36	36 X 40	9.1	4.6	2.4	FGP-36F8	2.65	1.35
FGP-3648F	36 X 48	40 X 48	11.5	6.8	3.2	FGP-3648F8	3.9	1.85
FGP-48F	48 X 48	48 X 54	13.2	9.5	3.9	FGP-48F8	5.45	2.25
FGP-SD24F	24 X 24	28 X 28	6.1	2.2	1.5	FGP-SD24F8	1.25	.85

FloGard®

Catch Basin Insert Filter

Grated Inlet Style

Oldcastle®
Stormwater Solutions

7921 Southpark Plaza, Suite 200 | Littleton, CO | 80120 | Ph: 800.579.8819 | oldcastlestormwater.com

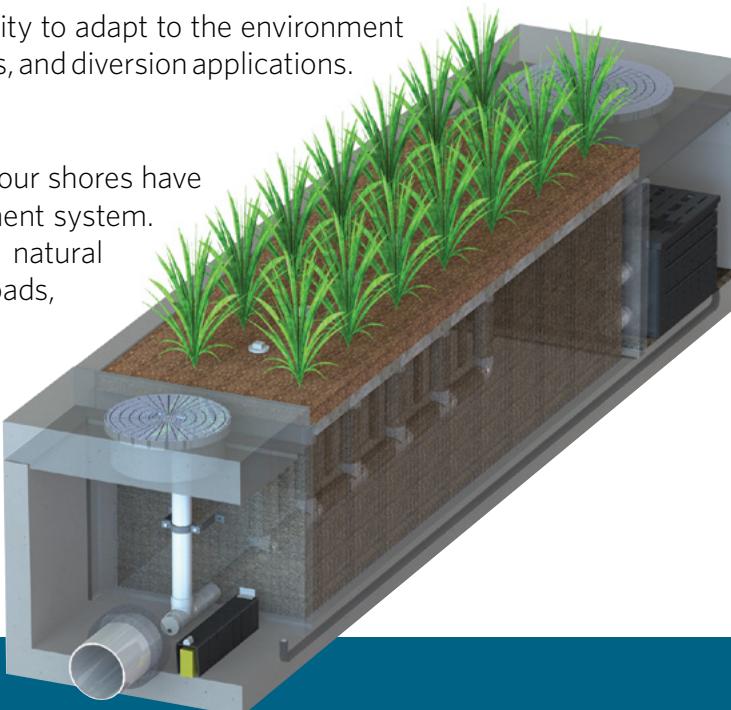
THIS DOCUMENT IS THE PROPERTY OF OLDCASTLE PRECAST, INC. IT IS SUBMITTED FOR REFERENCE PURPOSES ONLY AND SHALL NOT BE USED IN ANY WAY INJURIOUS TO THE INTERESTS OF SAID COMPANY. COPYRIGHT © 2010 OLDCASTLE PRECAST, INC. ALL RIGHTS RESERVED.

DRAWING NO. FGP-0001	REV G	ECO ECO-0142 JPR 7/13/16	DATE JPR 11/3/06	SHEET 2 OF 2
-------------------------	----------	--------------------------------	---------------------	--------------

Modular Wetlands® System Linear

A Stormwater Biofiltration Solution

OVERVIEW


The Bio Clean Modular Wetlands® System Linear (MWS Linear) represents a pioneering breakthrough in stormwater technology as the only biofiltration system to utilize patented horizontal flow, allowing for a smaller footprint, higher treatment capacity, and a wide range of versatility. While most biofilters use little or no pretreatment, the Modular Wetlands System Linear incorporates an advanced pretreatment chamber that includes separation and pre-filter cartridges. In this chamber, sediment and hydrocarbons are removed from runoff before entering the biofiltration chamber, reducing maintenance costs and improving performance.

Horizontal flow also gives the system the unique ability to adapt to the environment through a variety of configurations, bypass orientations, and diversion applications.

The Urban Impact

For hundreds of years, natural wetlands surrounding our shores have played an integral role as nature's stormwater treatment system. But as cities grow and develop, our environment's natural filtration systems are blanketed with impervious roads, rooftops, and parking lots.

Bio Clean understands this loss and has spent years re-establishing nature's presence in urban areas, and rejuvenating waterways with the MWS Linear.

PERFORMANCE

The Modular Wetlands® System Linear continues to outperform other treatment methods with superior pollutant removal for TSS, heavy metals, nutrients, hydrocarbons, and bacteria. Since 2007 the MWS Linear has been field tested on numerous sites across the country and is proven to effectively remove pollutants through a combination of physical, chemical, and biological filtration processes. In fact, the MWS Linear harnesses some of the same biological processes found in natural wetlands in order to collect, transform, and remove even the most harmful pollutants.

66% REMOVAL OF DISSOLVED ZINC	69% REMOVAL OF TOTAL ZINC	38% REMOVAL OF DISSOLVED COPPER	64% REMOVAL OF TOTAL PHOSPHORUS	
45% REMOVAL OF NITROGEN	50% REMOVAL OF TOTAL COPPER	95% REMOVAL OF MOTOR OIL	67% REMOVAL OF ORTHO PHOSPHORUS	85% REMOVAL OF TSS

APPROVALS

The Modular Wetlands® System Linear has successfully met years of challenging technical reviews and testing from some of the most prestigious and demanding agencies in the nation and perhaps the world. Here is a list of some of the most high-profile approvals, certifications, and verifications from around the country.

Washington State Department of Ecology TAPE Approved

The MWS Linear is approved for General Use Level Designation (GULD) for Basic, Enhanced, and Phosphorus treatment at 1 gpm/ft² loading rate. The highest performing BMP on the market for all main pollutant categories.

California Water Resources Control Board, Full Capture Certification

The Modular Wetlands® System is the first biofiltration system to receive certification as a full capture trash treatment control device.

Virginia Department of Environmental Quality, Assignment

The Virginia Department of Environmental Quality assigned the MWS Linear the highest phosphorus removal rating for manufactured treatment devices to meet the new Virginia Stormwater Management Program (VSMP) regulation technical criteria.

Maryland Department of the Environment, Approved ESD

Granted Environmental Site Design (ESD) status for new construction, redevelopment, and retrofitting when designed in accordance with the design manual.

MA STEP Evaluation

The University of Massachusetts at Amherst – Water Resources Research Center issued a technical evaluation report noting removal rates up to 84% TSS, 70% total phosphorus, 68.5% total zinc, and more.

Rhode Island Department of Environmental Management, Approved BMP

Approved as an authorized BMP and noted to achieve the following minimum removal efficiencies: 85% TSS, 60% pathogens, 30% total phosphorus, and 30% total nitrogen.

Texas Commission on Environmental Quality

Atlanta Regional Commission

ADVANTAGES

- HORIZONTAL FLOW BIOFILTRATION
- GREATER FILTER SURFACE AREA
- PRETREATMENT CHAMBER
- PATENTED PERIMETER VOID AREA
- FLOW CONTROL
- NO DEPRESSED PLANTER AREA
- AUTO DRAINDOWN MEANS NO MOSQUITO VECTOR

OPERATION

The Modular Wetlands® System Linear is the most efficient and versatile biofiltration system on the market, and it is the only system with horizontal flow which:

- Improves performance
- Reduces footprint
- Minimizes maintenance

Figure 1 & Figure 2 illustrate the invaluable benefits of horizontal flow and the multiple treatment stages.

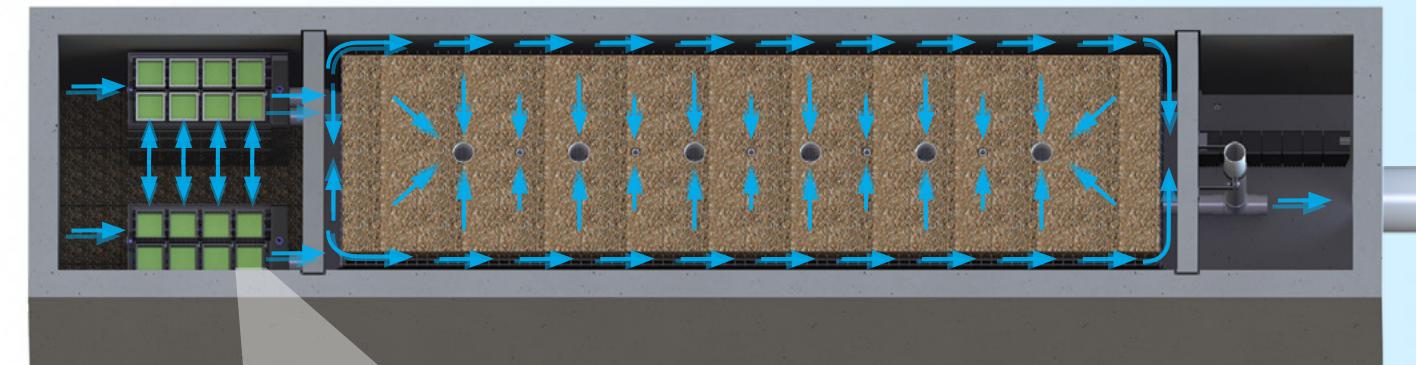
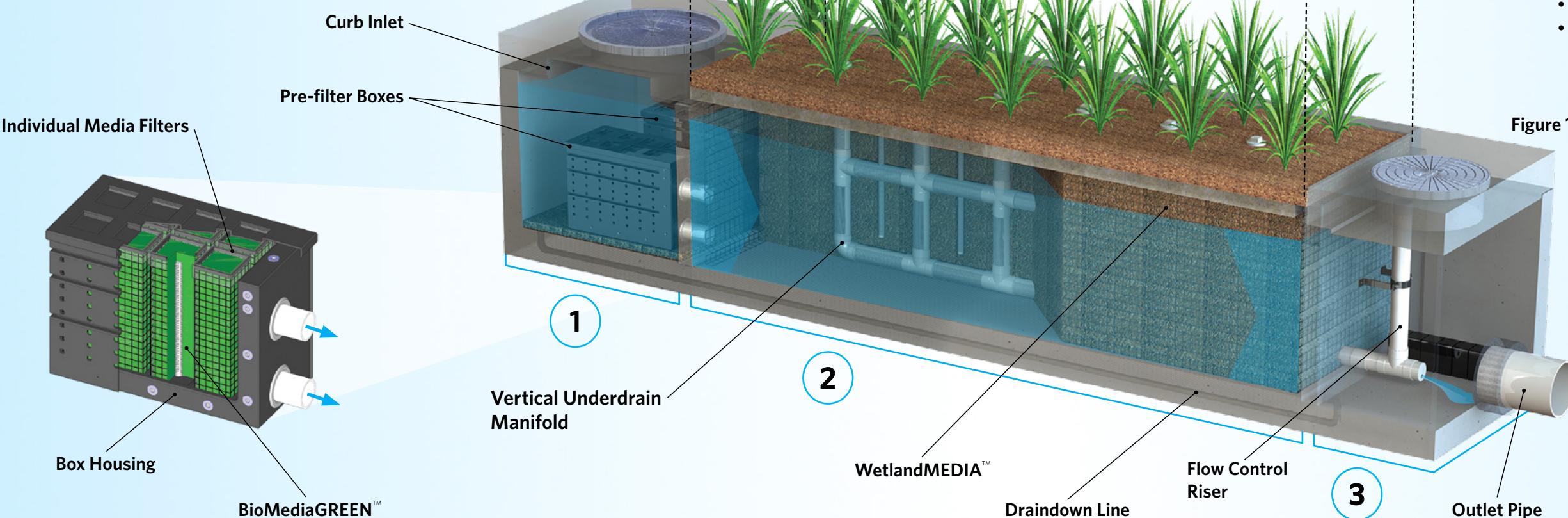


Figure 2,
Top View

2x to 3x more surface area than traditional downward flow bioretention systems.


1 PRETREATMENT

SEPARATION

- Trash, sediment, and debris are separated before entering the pre-filter boxes
- Designed for easy maintenance access

PRE-FILTER BOXES

- Over 25 sq. ft. of surface area per box
- Utilizes BioMediaGREEN™ filter material
- Removes over 80% of TSS and 90% of hydrocarbons
- Prevents pollutants that cause clogging from migrating to the biofiltration chamber

2 BIOFILTRATION

HORIZONTAL FLOW

- Less clogging than downward flow biofilters
- Water flow is subsurface
- Improves biological filtration

PATENTED PERIMETER VOID AREA

- Vertically extends void area between the walls and the WetlandMEDIA™ on all four sides
- Maximizes surface area of the media for higher treatment capacity

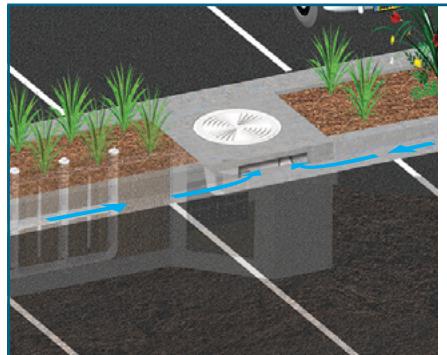
WETLANDMEDIA

- Contains no organics and removes phosphorus
- Greater surface area and 48% void space
- Maximum evapotranspiration
- High ion exchange capacity and lightweight

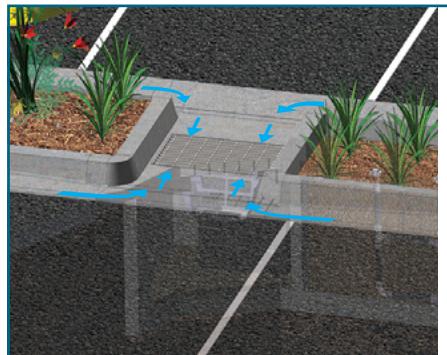
3 DISCHARGE

FLOW CONTROL

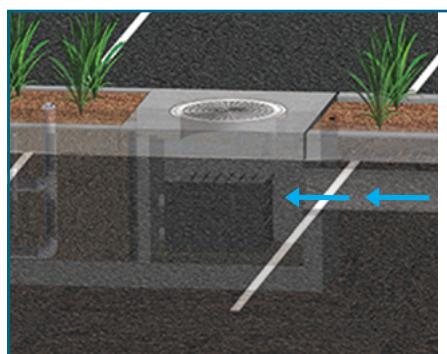
- Orifice plate controls flow of water through WetlandMEDIA™ to a level lower than the media's capacity
- Extends the life of the media and improves performance


DRAINDOWN FILTER

- The draindown is an optional feature that completely drains the pretreatment chamber
- Water that drains from the pretreatment chamber between storm events will be treated


CONFIGURATIONS

The Modular Wetlands® System Linear is the preferred biofiltration system of civil engineers across the country due to its versatile design. This highly versatile system has available “pipe-in” options on most models, along with built-in curb or grated inlets for simple integration into your storm drain design.


CURB TYPE

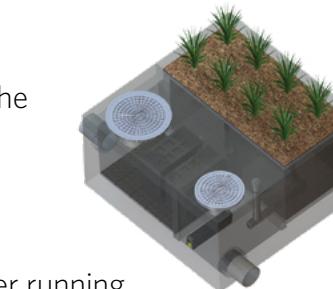
The Curb Type configuration accepts sheet flow through a curb opening and is commonly used along roadways and parking lots. It can be used in sump or flow-by conditions. Length of curb opening varies based on model and size.

GRATE TYPE

The Grate Type configuration offers the same features and benefits as the Curb Type but with a grated/drop inlet above the systems pretreatment chamber. It has the added benefit of allowing pedestrian access over the inlet. ADA-compliant grates are available to assure easy and safe access. The Grate Type can also be used in scenarios where runoff needs to be intercepted on both sides of landscape islands.

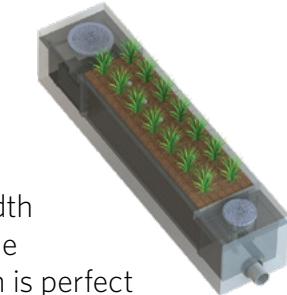
VAULT TYPE

The system's patented horizontal flow biofilter is able to accept inflow pipes directly into the pretreatment chamber, meaning the Modular Wetlands® can be used in end-of-the-line installations. This greatly improves feasibility over typical decentralized designs that are required with other biofiltration/bioretention systems. Another benefit of the “pipe-in” design is the ability to install the system downstream of underground detention systems to meet water quality volume requirements.


DOWNSPOUT TYPE

The Downspout Type is a variation of the Vault Type and is designed to accept a vertical downspout pipe from rooftop and podium areas. Some models have the option of utilizing an internal bypass, simplifying the overall design. The system can be installed as a raised planter, and the exterior can be stuccoed or covered with other finishes to match the look of adjacent buildings.

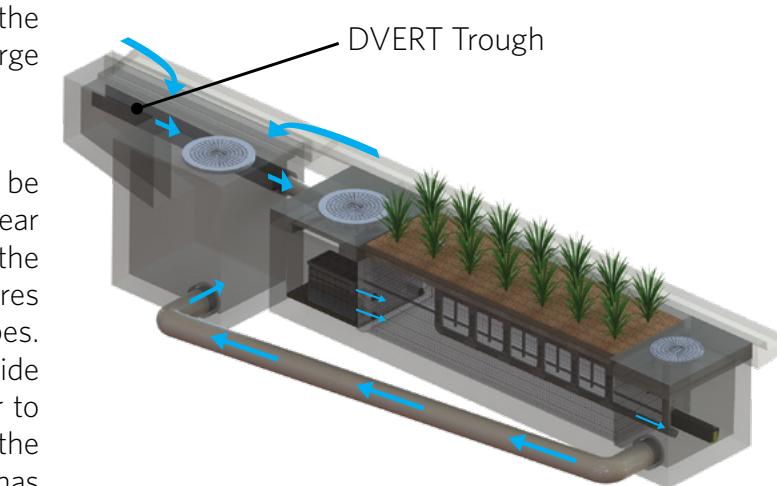
ORIENTATIONS


SIDE-BY-SIDE

The Side-By-Side orientation places the pretreatment and discharge chamber adjacent to one another with the biofiltration chamber running parallel on either side. This minimizes the system length, providing a highly compact footprint. It has been proven useful in situations such as streets with directly adjacent sidewalks, as half of the system can be placed under that sidewalk. This orientation also offers internal bypass options as discussed below.

END-TO-END

The End-To-End orientation places the pretreatment and discharge chambers on opposite ends of the biofiltration chamber, therefore minimizing the width of the system to 5 ft. (outside dimension). This orientation is perfect for linear projects and street retrofits where existing utilities and sidewalks limit the amount of space available for installation. One limitation of this orientation is that bypass must be external.


BYPASS

INTERNAL BYPASS WEIR (SIDE-BY-SIDE ONLY)

The Side-By-Side orientation places the pretreatment and discharge chambers adjacent to one another allowing for integration of internal bypass. The wall between these chambers can act as a bypass weir when flows exceed the system's treatment capacity, thus allowing bypass from the pretreatment chamber directly to the discharge chamber.

EXTERNAL DIVERSION WEIR STRUCTURE

This traditional offline diversion method can be used with the Modular Wetlands® System Linear in scenarios where runoff is being piped to the system. These simple and effective structures are generally configured with two outflow pipes. The first is a smaller pipe on the upstream side of the diversion weir - to divert low flows over to the MWS Linear for treatment. The second is the main pipe that receives water once the system has exceeded treatment capacity and water flows over the weir.

FLOW-BY-DESIGN

This method is one in which the system is placed just upstream of a standard curb or grate inlet to intercept the first flush. Higher flows simply pass by the MWS Linear and into the standard inlet downstream.

them over to a connecting pipe exiting out the wall of the inlet and leading to the MWS Linear. The DVERT is perfect for retrofit and green street applications that allow the system to be installed anywhere space is available.

SPECIFICATIONS

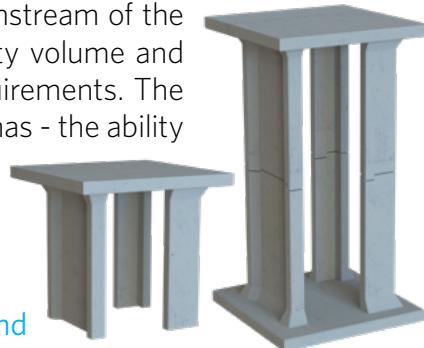
FLOW-BASED DESIGNS

The Modular Wetlands® System Linear can be used in stand-alone applications to meet treatment flow requirements, and since it is the only biofiltration system that can accept inflow pipes several feet below the surface, it can be used not only in decentralized design applications but also as a large central end-of-the-line application for maximum feasibility.

BMPs for DMA A1

BMPs for DMA A2

MODEL #	DIMENSIONS	WETLANDMEDIA SURFACE AREA (sq. ft.)	TREATMENT FLOW RATE (cfs)
MWS-L-4-4	4' x 4'	23	0.052
MWS-L-4-6	4' x 6'	32	0.073
MWS-L-4-8	4' x 8'	50	0.115
MWS-L-4-13	4' x 13'	63	0.144
MWS-L-4-15	4' x 15'	76	0.175
MWS-L-4-17	4' x 17'	90	0.206
MWS-L-4-19	4' x 19'	103	0.237
MWS-L-4-21	4' x 21'	117	0.268
MWS-L-6-8	7' x 9'	64	0.147
MWS-L-8-8	8' x 8'	100	0.230
MWS-L-8-12	8' x 12'	151	0.346
MWS-L-8-16	8' x 16'	201	0.462
MWS-L-8-20	9' x 21'	252	0.577
MWS-L-8-24	9' x 25'	302	0.693
MWS-L-10-20	10' x 20'	302	0.693


VOLUME-BASED DESIGNS

HORIZONTAL FLOW BIOFILTRATION ADVANTAGE

MODULAR WETLANDS® SYSTEM LINEAR WITH URBANPOND™ PRESTORAGE

In the example above, the Modular Wetlands® System Linear is installed downstream of the UrbanPond storage system. The MWS Linear is designed for the water quality volume and will treat and discharge the required volume within local draindown time requirements. The MWS Linear's unique horizontal flow design, gives it benefits no other biofilter has - the ability to be placed downstream of detention ponds, extended dry detention basins, underground storage systems and permeable paver reservoirs. The system's horizontal flow configuration and built-in orifice control allows it to be installed with just 6" of fall between inlet and outlet pipe for a simple connection to projects with shallow downstream tie-in points.

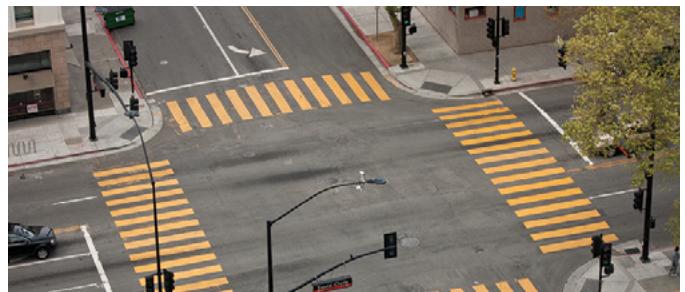
UrbanPond
Single and Double Modules

DESIGN SUPPORT

Bio Clean engineers are trained to provide you with superior support for all volume sizing configurations throughout the country. Our vast knowledge of state and local regulations allow us to quickly and efficiently size a system to maximize feasibility. Volume control and hydromodification regulations are expanding the need to decrease the cost and size of your biofiltration system. Bio Clean will help you realize these cost savings with the MWS Linear, the only biofilter than can be used downstream of storage BMPs.

ADVANTAGES

- LOWER COST THAN FLOW-BASED DESIGN
- BUILT-IN ORIFICE CONTROL STRUCTURE
- MEETS LID REQUIREMENTS
- WORKS WITH DEEP INSTALLATIONS


APPLICATIONS

The Modular Wetlands® System Linear has been successfully used on numerous new construction and retrofit projects. The system's superior versatility makes it beneficial for a wide range of stormwater and waste water applications - treating rooftops, streetscapes, parking lots, and industrial sites.

INDUSTRIAL

Many states enforce strict regulations for discharges from industrial sites. The MWS Linear has helped various sites meet difficult EPA-mandated effluent limits for dissolved metals and other pollutants.

STREETS

Street applications can be challenging due to limited space. The MWS Linear is very adaptable, and it offers the smallest footprint to work around the constraints of existing utilities on retrofit projects.

COMMERCIAL

Compared to bioretention systems, the MWS Linear can treat far more area in less space, meeting treatment and volume control requirements.

RESIDENTIAL

Low to high density developments can benefit from the versatile design of the MWS Linear. The system can be used in both decentralized LID design and cost-effective end-of-the-line configurations.

PARKING LOTS

Parking lots are designed to maximize space and the Modular Wetlands® 4 ft. standard planter width allows for easy integration into parking lot islands and other landscape medians.

MIXED USE

The MWS Linear can be installed as a raised planter to treat runoff from rooftops or patios, making it perfect for sustainable "live-work" spaces.

More applications include:

- Agriculture
- Reuse
- Low Impact Development
- Waste Water

PLANT SELECTION

Abundant plants, trees, and grasses bring value and an aesthetic benefit to any urban setting, but those in the Modular Wetlands® System Linear do even more - they increase pollutant removal. What's not seen, but very important, is that below grade, the stormwater runoff/flow is being subjected to nature's secret weapon: a dynamic physical, chemical, and biological process working to break down and remove non-point source pollutants. The flow rate is controlled in the MWS Linear, giving the plants more contact time so that pollutants are more successfully decomposed, volatilized, and incorporated into the biomass of the Modular Wetlands® micro/macro flora and fauna.

A wide range of plants are suitable for use in the Modular Wetlands®, but selections vary by location and climate. View suitable plants by visiting biocleanenvironmental.com/plants.

INSTALLATION

MAINTENANCE

The Modular Wetlands® System Linear is simple, easy to install, and has a space-efficient design that offers lower excavation and installation costs compared to traditional tree-box type systems. The structure of the system resembles precast catch basin or utility vaults and is installed in a similar fashion.

The system is delivered fully assembled for quick installation. Generally, the structure can be unloaded and set in place in 15 minutes. Our experienced team of field technicians is available to supervise installations and provide technical support.

Reduce your maintenance costs, man hours, and materials with the Modular Wetlands® System Linear. Unlike other biofiltration systems that provide no pretreatment, the MWS Linear is a self-contained treatment train which incorporates simple and effective pretreatment.

Maintenance requirements for the biofilter itself are almost completely eliminated, as the pretreatment chamber removes and isolates trash, sediments, and hydrocarbons. What's left is the simple maintenance of an easily accessible pretreatment chamber that can be cleaned by hand or with a standard vac truck. Only periodic replacement of low-cost media in the pre-filter boxes is required for long-term operation, and there is absolutely no need to replace expensive biofiltration media.

5796 Armada Drive Suite 250
Carlsbad, CA 92008
855.566.3938
stormwater@forterrabp.com
biocleanenvironmental.com

APPENDIX F -AMENDMENT 1

GEOTECHNICAL STUDY

Project No. W1771-88-01
May 10, 2023

VIA EMAIL

Mr. John Hicks
Kam Sang Company
411 E Huntington Dr, #305
Arcadia, CA 91006

Subject: GEOTECHNICAL FEASIBILITY EVALUATION
BUILDING 2 – BROOKHURST TRIANGLE
BROOKHURST STREET AND GARDEN GROVE BOULEVARD
GARDEN GROVE, CALIFORNIA

Dear Mr. Hicks:

This letter presents the result of our geotechnical feasibility evaluation of the project Building 2 project site located within the Brookhurst Triangle. The overall site is located at the intersection of Brookhurst Street and Garden Grove Boulevard in Garden Grove, California. This geotechnical feasibility evaluation report summarizes the anticipated geologic hazards as well as the subsurface data collected from nearby and adjacent sites and provides general geotechnical recommendations regarding development of the site.

The scope our evaluation included review and evaluation of pertinent geologic and seismologic information pertaining to the site including published geologic maps, geologic and seismic hazard maps published by California Geological Survey (CGS), and other in-house reports and geologic maps pertaining to the site. These documents include but are not limited to the State of California official Alquist-Priolo Earthquake Fault Zone maps and Seismic Hazard Zone maps published by the CGS.

Our scope of services also included a review of geotechnical investigation reports for the subject properties and adjacent properties from our in-house repository. A full list of references reviewed to prepare this report are provided in the *List of References* section.

This scope of work did not include site-specific borings. The purpose of this report is to demonstrate project feasibility; it is not intended for submittal to the building official. Site-specific exploration will be required, and the actual subsurface geologic conditions may vary from those described herein.

1. SITE AND PROJECT DESCRIPTION

The site is an approximately 56,000 square-foot lot identified as Lot 1 of Tract 17702, APN: 089-661-10, and is currently vacant land. Based on a review of historic aerials, the site was previously used as a construction laydown yard and an unpaved parking lot. Historic aerials from 1987 show that the site was once developed with structures and paved surface parking.

The existing conditions are depicted on Figure 1 below.

Figure 1: Existing Conditions

The topography at the site appears relatively level with surface drainage flowing along existing contours to city streets.

That subject project consists of the construction of Building 2 within the overall Brookhurst Triangle development. Building 2 is anticipated to consist of a 5-story structure to be constructed at or near present grade, or over one level of subterranean parking.

2. PRIOR SITE EXPLORATION

A geotechnical investigation for the adjacent Building 1 project was performed in 2013 by Cal Land Engineering, Inc. (Cal Land). The prior subsurface exploration included the excavation and logging of 5 borings to a maximum depth of 5½ feet below the existing ground surface. Groundwater was encountered at a depth of 15 feet below the ground surface. Recommendations to support Building 1 on a reinforced concrete mat foundation were provided.

Additional site exploration was performed in 2013 by Geotechnical Solutions, Inc. (GSI) and consisted of the excavation of 6 borings using a hollow stem auger drilling machine to depths of up to 5 feet below the ground surface. The additional site exploration was performed for the purpose of studying onsite infiltration characteristics. The report by GSI found shallow onsite infiltration to be feasible.

3. GEOLOGIC CONDITIONS

The subject site is located on the south-central portion of the Orange County Coastal Plain, a relatively flat-lying to very gently sloping alluviated surface with an average slope of less than 20 feet per mile. The lowland surface is bounded by hills and mountains on the north and east, and by the Pacific Ocean to the south and southwest and the Los Angeles Coastal Plain to the west. Prominent structural features within the Orange County Coastal Plain include the central lowland plain, the northwest trending line of low hills and mesas underlain by the Newport-Inglewood Fault Zone along the coastline (Newport Mesa, Huntington Beach Mesa, Bolsa Chica Mesa, and Landing Hill), and the San Joaquin Hills to the southeast.

Figure 2: Local Geologic Map

4. GEOLOGIC MATERIALS

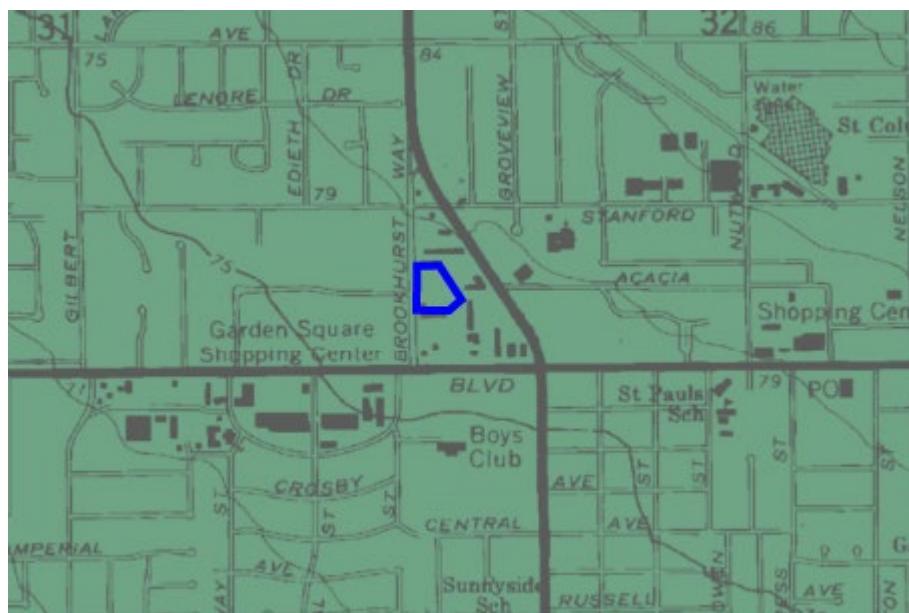
Based on the prior site exploration performed for the adjacent Building 1 site, it is anticipated that the site is underlain by a relatively thin veneer of artificial fill underlain by Holocene age alluvial fan deposits consisting of unconsolidated to poorly consolidated sand, silt, and clay (CGS, 2012). The alluvium is anticipated to consist of poorly graded sand, silty sand, and sandy clay. Some layers of clayey silt and silty clay were reported by Cal Land.

5. GROUNDWATER

Review of the Seismic Hazard Zone Report for the Anaheim Quadrangle (California Division of Mines and Geology [CDMG], 1997, revised 2001) indicates the historically highest groundwater level in the area is approximately 15 feet beneath the ground surface. Groundwater information presented in this document is generated from data collected in the early 1900's to the late 1990s. Based on current groundwater basin management practices, it is unlikely that groundwater levels will ever exceed the historic high levels.

Groundwater was encountered in the borings performed in 2013 by Cal Land at a depth of approximately 15 feet below the ground surface.

Considering the reported historic high groundwater level in the area, the depth to groundwater encountered in the prior borings, and the depth of the proposed construction, static groundwater will likely not be encountered during construction. If deep excavations are necessary for shoring piles or elevator pistons, groundwater may be encountered. However, it is not uncommon for groundwater levels to vary seasonally or for groundwater seepage conditions to develop where none previously existed, especially in impermeable fine-grained soils which are heavily irrigated or after seasonal rainfall. In addition, recent requirements for stormwater infiltration could result in shallower seepage conditions in the immediate site vicinity. Proper surface drainage of irrigation and precipitation will be critical for future performance of the project.


6. GEOLOGIC-SEISMIC HAZARDS

We have found the following based on our review of published maps, technical reports, available prior geotechnical investigation reports and available city, county and state documents:

1. The closest Holocene-active fault with the potential for surface fault rupture is the Newport-Inglewood Fault Zone located approximately 1.9 miles southwest of the site. The site is not within a state-designated Alquist-Priolo Earthquake Fault Zone (CGS, 2022a; 2022b) as having a potential for surface fault rupture. No Holocene-active or pre-Holocene faults with the potential for surface fault rupture are known to pass directly beneath the site or project toward the site. Therefore, the potential for surface rupture due to faulting occurring beneath the site during the design life of the proposed development is considered low.
2. The site has not experienced significant ground failure as a result of any of the major historic recorded earthquakes; however, the site could be subjected to strong ground shaking in the event of an earthquake. This hazard is common throughout California and the effects of ground shaking can be addressed if the proposed structures are designed and constructed in conformance with current building codes and engineering practices.

3. Liquefaction is a phenomenon in which loose, saturated, relatively cohesionless soil deposits lose shear strength during strong ground motions. Primary factors controlling liquefaction include intensity and duration of ground motion, gradation characteristics of the subsurface soils, in-situ stress conditions, and the depth to groundwater. Review of the State of California Seismic Hazard Zone Map for the Anaheim 7.5 Minute Quadrangle Map (CDMG, 1998b) indicates that the site is located within an area designated as having a potential for liquefaction (area shaded green on Figure 3). Based on the report by Cal Land for the adjacent Building 1 site, seismically-induced settlement of up to 0.75 inches was predicted. An updated site-specific evaluation of the potential for liquefaction will be required prior to site development.

Figure 3: Seismic Hazard Zone Map

4. The topography at the site and in the general site vicinity is essentially flat-lying. Based on a review of the City of Garden Grove Safety Element (2008) and the Orange County Safety Element (2004), the site is not located within an area identified as having a potential for slope stability hazards. Also, the site is not within an area identified as having a potential for seismic slope instability (CDMG, 1998). There are no mapped landslides near the site, nor is the site in the path of any known or potential landslides. Therefore, the potential for slope stability hazards to adversely affect the proposed development is considered low.
5. Based on a review of the County of Orange Safety Element (2004), the site is not located downslope of any large bodies of water that could adversely affect the site in the event of earthquake-induced dam failure or seiche (wave oscillations in an enclosed or semi-enclosed body of water). Therefore, probability of earthquake-induced flooding is considered very low.
6. The site is located within a Flood Zone X (0.2%) as designated by FEMA (2023). Zone X (0.2%) is defined as an area of 0.2% annual flood chance or an area of 1% annual chance of flooding with average flood depths of less than 1 foot (FEMA, 2023). Therefore, the site is considered to have a moderate flood potential.

7. The site is not located within an area of known subsidence associated with fluid withdrawal (groundwater or petroleum), or peat oxidation. Therefore, the potential for subsidence to impact the site is considered low.
8. The site is not located within a coastal area. Therefore, tsunamis are not considered a significant hazard at the site.
9. Based on a review of the California Geologic Energy Management Division (CalGEM) Well Finder Website, the site is not located within an oil field and active oil or gas wells are not documented in the immediate site vicinity (CalGEM, 2022). However, due to the voluntary nature of record reporting by the oil well drilling companies, wells may be improperly located or not shown on the location map and undocumented wells could be encountered during construction. Any wells encountered during construction will need to be properly abandoned in accordance with the current requirements of the CalGEM.
10. Since the site is not located within the boundaries of an oil field, the potential for methane or other volatile gases to occur at the site is considered low. However, should it be determined that a methane study is required for the proposed development it is recommended that a qualified methane consultant be retained to perform the study and provide mitigation measures as necessary.

7. CONCLUSIONS

It is our opinion that no geologic conditions are known to exist at the site that would preclude the construction of the proposed development. A comprehensive geotechnical investigation with site-specific explorations will be required to provide conclusions and recommendations for the design and construction of the site. This report is intended to provide an overview of anticipated geologic-seismic hazard and soils information in order to demonstrate feasibility of the site development.

1. There are no known active faults that cross the site. The site seismicity is typical for this area of Garden Grove and Southern California. Structure design should consider the requirements of the California Building Code.
2. The potential for other geologic hazards, such as slope instability, seiches, flooding, inundation, tsunamis, methane/other volatile gases, and subsidence affecting the site is also considered low.
3. The site is located within an area identified as having a potential for liquefaction and, based on our review of prior geotechnical reports, seismically induced settlements could be on the order of 1 inch or greater. These magnitudes of seismically induced settlements are considered moderate; the potential for liquefaction will likely impact the foundation design.

4. Based on the consideration that the site was previously developed, it is anticipated that a thin veneer of artificial fill is present at the site. Any existing fill is not considered suitable for direct support of proposed foundations or slabs. The existing fill must be excavated and replaced as compacted fill or penetrated through by foundation excavations. The existing fill and site soils will likely be suitable for re-use onsite as engineered fill for geotechnical purposes.
5. Groundwater has been encountered at depths of 15 feet below the ground surface. Based on the anticipated depth of construction, static groundwater is not anticipated to be encountered during construction. However, if deeper excavations are necessary for shoring piles or elevator pistons, groundwater may be encountered.
6. If the project includes 2 level of subterranean construction, there is a potential for high-moisture content soils to be encountered at the excavation bottom. If this condition exists, stabilization measures will likely be necessary to prevent excessive disturbance to the excavation bottom and to create a firm surface upon which engineered fill can be placed. Stabilization typically consists of the placement of a thin lift of 3- to 6-inch angular rock or the placement of a geogrid and 12-inches of base material.
7. Due to the potential for liquefaction, the grading and foundation design will need to address the potential for static and seismically induced settlements to impact proposed development of the site.
8. For a proposed 5-story residential structure, it is anticipated that a reinforced concrete mat foundation system or ground improvement consisting of stone columns will be necessary. The depth of ground improvement will depend on the liquefaction evaluation; for preliminary planning purposes a depth of ground improvement of 20 feet below the foundation system may be considered.
9. For on-grade construction with ground improvement, it is likely the proposed structure can be supported on conventional foundations. For subterranean construction with ground improvement, a mat foundation system is more compatible with subgrade stabilization and waterproofing, if necessary.
10. For on-grade construction, grading to remove and replace the existing artificial fill should be anticipated. The depth of existing artificial fill should be determined with site-specific borings. Excavations on the order of 5 to 6 feet in depth are common.
11. If subterranean construction is planned, considerations for design and construction must include temporary shoring.
12. Based on the potential for seismic and/or static settlements, consideration should be given to the flexibility of the utilities, and pavements installed in order to mitigate the damage caused by potential soil movements. Pressured utilities should be provided with earthquake shut off valves at their entrance to the site.
13. The soils encountered during the prior geotechnical investigation for Building 1 are considered to have a “very low” expansive potential. It is anticipated that similar conditions existing at the Building 2 site.

14. The soils encountered during the prior geotechnical investigation for Building 1 are considered "corrosive" with respect to corrosion of buried ferrous metals on site. Due to the corrosive potential of the soils, it is recommended that PVC, ABS or other approved plastic piping be utilized in lieu of cast-iron when in direct contact with the site soils.
15. The soils encountered during the prior explorations possess a sulfate exposure class of "S0" to concrete structures as defined by ACI 318. Special requirements for concrete mix design for soil corrosivity are not anticipated.

If you have any questions regarding this report, or if we may be of further service, please contact the undersigned.

Very truly yours,

GEOCON WEST, INC.

Jelisa Thomas Adams

GE 3092

LIST OF REFERENCES

Cal Land Engineering, Inc., 2013, *Report of Geotechnical Engineering Investigation, Proposed Residential (Phase I) and Commercial (Phase II) Development, 12791 Brookhurst street, (Brookhurst Triangle), Garden Grove, California*, dated October 17, 2013, Project No. 13-032-008 GE.

California Division of Mines and Geology, 1997 (revised 2001), *Seismic Hazard Evaluation Report for the Anaheim and Newport Beach 7.5-Minute Quadrangles, Orange County, California*, Seismic Hazard Zone Report 003.

California Division of Mines and Geology, 1998, *State of California, Seismic Hazard Zones, Anaheim Quadrangle, Revised Official Map Released: April 15, 1998*.

California Geological Survey, 2012, *Geologic Compilation of Quaternary Surficial Deposits in Southern California, Santa Ana 30' X 60' Quadrangle*, A Project for the Department of Water Resources by the California Geological Survey, Compiled from existing sources by Trinda L. Bedrossian, CEG and Peter D. Roffers, CGS Special Report 217, Plate 16, Scale 1:100,000.

California Geological Survey, 2022a, CGS Information Warehouse, Regulatory Map Portal, <http://maps.conservation.ca.gov/cgs/informationwarehouse/index.html?map=regulatorymaps>.

California Geological Survey, 2022b, Earthquake Zones of Required Investigation, <https://maps.conservation.ca.gov/cgs/EQZApp/app/>.

FEMA, 2023, Online Flood Hazard Maps, [Flood Insurance Rate Map, Orange County, California and Incorporated Areas, Panel 119J of 539](http://www.esri.com/hazards/index.html), <http://www.esri.com/hazards/index.html>.

Garden Grove, City of, 2008, *Garden Grove General Plan 2030, Chapter 11 Safety Element, Exhibits SAF-2, SAF-3, and SAF-4*.

Geotechnical Solutions, Inc., 2013, *Geotechnical Engineering Percolation Test Report, Brookhurst Triangle, Garden Grove*, dated November 12, 2013, project No. G4338-01.

Orange County General Plan, 2004, *Safety Element*, Advance Planning Program, Environmental Management Agency.

LIMITATIONS AND UNIFORMITY OF CONDITIONS

1. The information presented in this report pertains only to the site evaluated and is based upon published maps and reports. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by Geocon West, Inc.
2. The findings of this report are valid as of the date of this report. However, changes in the published maps and reports can occur with the passage of time. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of two years.